[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Bounded Scaling Function Projective Synchronization of Chaotic Systems with Adaptive Finite-Time Control

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the bounded scaling function projective synchronization of uncertain chaotic systems using adaptive finite-time control. Based on finite-time control and inequality principle, the new adaptive finite-time controller is designed to achieve two chaotic systems scaling function projective synchronized, and uncertain parameters of chaotic systems are also identified. Moreover, in comparison with those of the existing scaling function synchronization, the given scaling function can be more complex bounded functions. Some numerical are also given to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.P. Bhat, D.S. Bernstein, Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(11), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. G.R. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifur. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Dadras, H.R. Momeni, Adaptive sliding mode control of chaotic dynamical systems with application to synchronization. Math. Comput. Simul. 80(12), 2245–2257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Dadras, H.R. Momeni, V.J. Majd, Sliding mode control for uncertain new chaotic dynamical system. Chaos Solitons Fract. 41(4), 1857–1862 (2009)

    Article  MATH  Google Scholar 

  5. Z.X. Ding, Y. Shen, Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw. 76, 97–105 (2016)

    Article  Google Scholar 

  6. A.G. Ghada, M.S.N. Noorani, S.A. Bakar, S. Vahedi, Adaptive projective lag synchronization of uncertain complex dynamical networks with disturbance. Neurocomputing 207, 645–652 (2016)

    Article  Google Scholar 

  7. S.P. He, F. Liu, Robust finite-time stabilization of uncertain fuzzy jump systems. Int. J. Innov. Comput. Inf. Control 9, 3853–3862 (2010)

    Google Scholar 

  8. G.Z. Hu, Global synchronization for coupled Lur’e dynamical networks. Circuits Syst. Signal Process. 32(6), 2851–2866 (2013)

    Article  MathSciNet  Google Scholar 

  9. G. Hardy, J.E. Littlewood, G. Polya, Inequalities (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  10. T.Y. Jing, F.Q. Chen, X.H. Zhang, Finite-time lag synchronization of time-varying delayed complex networks via periodically intermittent control and sliding mode control. Neurocomputing 199, 178–184 (2016)

    Article  Google Scholar 

  11. J.Q. Lu, Z.D. Wang, J.D. Cao, D.W.C. Ho, J. Kurths, Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int. J. Bifur. Chaos 22(7), 1250176 (2012)

    Article  MATH  Google Scholar 

  12. J.Q. Lu, J. Kurths, J.D. Cao, N. Mahdavi, C. Huang, Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 285–292 (2012)

    Article  Google Scholar 

  13. J.Q. Lu, C.D. Ding, J.G. Lou, J.D. Cao, Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J. Frankl. Inst. 352, 5024–5041 (2015)

    Article  MathSciNet  Google Scholar 

  14. R.Q. Lu, P. Shi, H.Y. Su, Z.G. Wu, J.H. Lü, Synchronization of general chaotic neural networks with non-uniform sampling and packet missing: a switched system approach. IEEE Trans. Neural Netw. Learn. Syst. (2016). https://doi.org/10.1109/TNNLS.2016.2636163

    Google Scholar 

  15. T.H. Lee, J.H. Park, S.Y. Xu, Relaxed conditions for stability of time-varying delay systems. Automatica 75, 11–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. T.H. Lee, J.H. Park, A novel Lyapunov functional for stability of time-varying delay systems via matrix refined-function. Automatica 80, 239–242 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.H. Lü, G.R. Chen, A new chaotic attractor coined. Int. J. Bifur. Chaos 12, 659–661 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y.C. Ma, N.N. Ma, Finite-time H\(\infty \) synchronization for complex dynamical networks with mixed mode-dependent time delays. Neurocomputing 218, 223–233 (2016)

    Article  Google Scholar 

  19. G.F. Mei, X.Q. Wu, D. Ning, J.A. Lu, Finite-time stabilization of complex dynamical networks via optimal control. Complexity 21, 417–425 (2016)

    Article  MathSciNet  Google Scholar 

  20. R. Rakkiyappan, N. Sakthivel, J.D. Cao, Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays. Neural Netw. 66, 46–63 (2015)

    Article  Google Scholar 

  21. L. Shi, H. Zhu, S.M. Zhong, K.B. Shi, J. Cheng, Function projective synchronization of complex networks with asymmetric coupling via adaptive and pinning feedback control. ISA Trans. 65, 81–87 (2016)

    Article  Google Scholar 

  22. H. Shen, J.H. Park, Z.G. Wu, Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. 77(4), 1709–1720 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Tang, W.K. Wong, Distributed synchronization of coupled neural networks via randomly occurring control. IEEE Trans. Neural Netw. Learn. Syst. 24, 435–447 (2013)

    Article  Google Scholar 

  24. Y. Tang, H.J. Gao, W. Zou, J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Trans. Cybern. 43, 358–370 (2013)

    Article  Google Scholar 

  25. Y.Q. Wu, R.Q. Lu, P. Sh, H.Y. Su, Z.G. Wu, Adaptive output synchronization of heterogeneous network with an uncertain leader. Automatica 76, 183–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y.Q. Wu, X. Meng, L.H. Xie, R.Q. Lu, H.Y. Su, An input-based triggering approach to leader-following problems. Automatica 75, 221–228 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.Q. Wu, H.Y. Su, P. Shi, R.Q. Lu, Z.G. Wu, Output synchronization of non-identical linear multi-agent systems. IEEE Trans. Cybern. 47(1), 130–141 (2017)

    Article  Google Scholar 

  28. Y.Q. Wu, H.Y. Su, Z.G. Wu, Asymptotical synchronization of chaotic Lur’e systems under time-varying sampling. Circuits Syst. Signal Process. 33(3), 699–712 (2014)

    Article  Google Scholar 

  29. E.L. Wu, X.S. Yang, Generalized lag synchronization of neural networks with discontinuous activations and bounded perturbations. Circuits Syst. Signal Process. 34(7), 2381–2394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. X. Wang, J.A. Fang, H.Y. Mao, A.D. Dai, Finite-time global synchronization for a class of Markovian jump complex networks with partially unknown transition rates under feedback control. Nonlinear Dyn. 79, 47–61 (2015)

    Article  MATH  Google Scholar 

  31. J.K. Wang, X.Q. Chen, J.K. Fu, Adaptive finite-time control of chaos in permanent magnet synchronous motor with uncertain parameters. Nonlinear Dyn. 78(2), 1321–1328 (2014)

    Article  MATH  Google Scholar 

  32. Y. Wu, Y.H. Sun, L.F. Chen, Robust adaptive finite-time synchronization of nonlinear resource management system. Neurocomputing 171, 1131–1138 (2016)

    Article  Google Scholar 

  33. Y.W. Wang, W. Yang, J.W. Xiao, Z.G. Zeng, Impulsive multi-synchronization of coupled multistable neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1560–1571 (2017)

    Article  MathSciNet  Google Scholar 

  34. Y.H. Xu, W.N. Zhou, J.A. Fang, Modified scaling function projective synchronization of chaotic systems. Chin. Phys. B. 20(9), 090509 (2011)

    Article  Google Scholar 

  35. Y.H. Xu, W.N. Zhou, J.A. Fang, C.R. Xie, D.B. Tong, Finite-time synchronization of the complex dynamical network with non-derivative and derivative coupling. Neurocomputing 173, 1356–1361 (2016)

    Article  Google Scholar 

  36. Y.H. Xu, Y.J. Lu, W.X. Yan, W.N. Zhou, J.A. Fang, Bounded synchronization of the general complex dynamical network with delay feedback controller. Nonlinear Dyn. 84, 661–667 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. L.W. Zhou, Z.J. Wang, J. Zhou, W.N. Zhou, Mean square synchronization of neural networks with Levy noise via sampled-data and actuator saturating controller. Neurocomputing 173, 1235–1244 (2016)

    Article  Google Scholar 

  38. H. Zhang, Q.Q. Hong, H.C. Yan, F.W. Yang, G. Guo, Event-based distributed H\(\infty \) filtering networks of 2DOF quarter-car suspension systems. IEEE Trans. Ind. Inform. 13(1), 312–321 (2017)

    Article  Google Scholar 

  39. H. Zhang, X.Y. Zheng, H.C. Yan, C. Peng, Z.P. Wang, Q.J. Chen, Codesign of event-triggered and distributed H\(\infty \) filtering for active semi-vehicle suspension systems. IEEE Trans. Mechatron. 22(2), 1047–1058 (2017)

    Article  Google Scholar 

  40. H. Zhang, R.H. Yang, H.C. Yan, F.W. Yang, H\(\infty \) consensus of event-based multi-agent systems with switching topology. Inf. Sci. 370, 623–635 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61673221, 61673257, and 11701287), the Youth Fund Project of the Humanities and Social Science Research for the Ministry of Education of China (14YJCZH173), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (Jiangsu Province Office, No. [2015]1, PPZY2015B104), the Key Laboratory of Financial Engineering of Jiangsu Province (NSK2015-16), Applied Economics of key Sequence Disciplines of Jiangsu Higher Education Institutions (Jiangsu Province Office, No. [2014]37), “Qing-Lan Engineering” Foundation of Jiangsu Higher Education Institutions, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhua Xu or Chengrong Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhou, W. & Xie, C. Bounded Scaling Function Projective Synchronization of Chaotic Systems with Adaptive Finite-Time Control. Circuits Syst Signal Process 37, 3353–3363 (2018). https://doi.org/10.1007/s00034-017-0717-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0717-0

Keywords

Navigation