Abstract
This paper describes strategies to design voltage amplifiers, based on the second-generation current conveyors, CCIIs, with a relative gain error (RGE). The approach is independent from the internal architecture of the employed CCII and allows to reduce the RGE of the overall amplifier by taking into account the main CCII non-idealities. In particular, it describes how to evaluate the specific optimum resistive loads minimizing RGE, also proving that these values are independent from the CCII internal implementation and related only to the parasitic components at X and Z nodes as well as to the desired ideal voltage gain. In order to validate the proposed design methodology, the commercial component AD844 has been considered as the CCII. Both analytical relationships and experimental results confirm the calculation of an optimum load resistance which minimizes the RGE of the voltage amplifier and, simultaneously, that a more accurate voltage gain can be obtained if the nominal values of the CCII parasitic resistances are taken into account. The reported findings provide design rules to implement, also at transistor level in a standard CMOS technology, CCII-based voltage amplifiers with low relative gain errors, which are of special interest for sensor interfaces and measurement systems.
Similar content being viewed by others
References
AD844, Current Feedback Op-Amp Datasheet, Analog Devices Inc., Norwood, MA (1990)
M. Aurelio Duarte-Villasenor, E. Tlelo-Cuautle, L. Gerardo de la Fraga, Binary genetic encoding for the synthesis of mixed-mode circuit topologies. Circuits Syst. Signal Process. 31, 849–863 (2012)
C.M. Chang, M.N.S. Swamy, A.M. Soliman, Analytical synthesis of voltage-mode even/odd-nth-order differential difference current conveyor and fully differential current conveyor II-grounded resistor and capacitor universal filter structures. Int. J. Circuit Theor. Appl. 43, 1263–1310 (2015). doi:10.1002/cta.2011
I. Choi, H. Seo, B. Kim, Accurate dB-linear variable gain amplifier with gain error compensation. IEEE J. Solid-State Circuits 48(2), 456–464 (2013). doi:10.1109/JSSC.2012.2227606
A. De Marcellis, C. Di Carlo, G. Ferri, V. Stornelli, A CCII-based wide frequency range square waveform generator. Int. J. Circuit Theor. Appl. 41(1), 1–13 (2011). doi:10.1002/cta.781
A. De Marcellis, G. Ferri, Analog Circuits and Systems for Voltage-Mode and Current-Mode Sensor Interfacing Applications (Springer, Amsterdam, 2011)
G. Di Cataldo, G. Palumbo, S. Pennisi, A Schmitt trigger by means of a CCII+. Int. J. Circuit Theor. Appl. 23, 161–165 (1995). doi:10.1007/s00034-011-9373-y
J. Dostal, Operational Amplifiers (Elsevier, Boston, 2013)
C. Falconi, C. Di Natale, A. D’Amico, M. Faccio, Electronic interface for the accurate read-out of resistive sensors in low voltage-low power integrated systems. Sens. Actuators A Phys. 117, 121–126 (2005). doi:10.1016/j.sna.2004.05.025
C. Falconi, G. Ferri, V. Stornelli, A. De Marcellis, D. Mazzieri, A. D’Amico, Current-mode high-accuracy high-precision CMOS amplifiers. IEEE Trans. Circuits Syst. II 55(5), 394–398 (2008). doi:10.1109/TCSII.2007.914407
C. Falconi, E. Martinelli, C. Di Natale, A. D’Amico, F. Maloberti, P. Malcovati, A. Baschirotto, V. Stornelli, G. Ferri, Electronic interfaces. Sens. Actuators B Chem. 121, 295–329 (2007)
G. Ferri, A. De Marcellis, C. Di Carlo, V. Stornelli, A. Flammini, A. Depari, D. Marioli, E. Sisinni, A CCII-based low-voltage low-power read-out circuit for DC-excited resistive gas sensors. IEEE Sens. J. 9(12), 2035–2041 (2009). doi:10.1109/JSEN.2009.2033197
G. Ferri, N.C. Guerrini, Low Voltage Low Power CMOS Current Conveyors (Kluwer Academic Publisher, Boston, 2003)
G. Ferri, V. Stornelli, M. Fragnoli, An integrated improved CCII topology for resistive sensor application. Analog Integr. Circuits Signal Process. 48(3), 247–250 (2006)
J. Huijsing, R.J. Van de Plassche, W. Sansen, Analog Circuit Design: Low-Noise, Low-Power, Low-Voltage; Mixed-Mode Design with CAD Tools; Voltage, Current and Time References (Springer Science & Business Media, Boston, 2013)
T.M. Khaneshan, M. Nematzade, K. Hadidi, A. Khoei, Analysis and design of a precise voltage buffer. J. Circuits Syst. Comput. 24(4) (2015). doi:10.1142/S0218126615500589
F. Khateb, N. Khatib, D. Kubánek, Novel ultra-low-power class AB CCII+ based on floating-gate folded cascode OTA. Circuits Syst. Signal Process. 31(2), 447–464 (2012)
K. Koli, K. Halonen, CMOS Current Amplifiers (Kluwer Academic Publishers, Boston, 2002)
J.M. Munoz-Pacheco, E. Tlelo-Cuautle, I.R. Toxqui-Toxqui, R. Trejo-Guerra, Frequency limitations in generating multi-scroll chaotic attractors using CFOAs. Int. J. Electron. 101(11), 1559–1569 (2014)
J. Nunez, E. Tlelo-Cuautle, C. Ramirez, J.M. Jimenez, CCII plus based on QFGMOS for implementing Chua’s chaotic oscillator. IEEE Lat. Am. Trans. 13, 2865–2870 (2015)
S. Palmisano, G. Palumbo, S. Pennisi, CMOS Current Amplifiers (Springer Science & Business Media, New York, 2012)
L. Safari, S. Minaei, A novel resistor-free electronically adjustable current-mode instrumentation amplifier. Circuits Syst. Signal Process. 32(3), 1025–1038 (2013)
R. Senani, A.K. Singh, V.K. Singh, Current Feedback Operational Amplifiers and Their Applications (Springer Science & Business Media, London, 2013)
W.A. Serdijn, A.C. Van Der Woerd, J.C. Kuenen, Low-Voltage Low-Power Analog Integrated Circuits (Kluwer Academic Publishers, Boston, 1995)
V. Stornelli, G. Ferri, A. De Marcellis, C. Falconi, D. Mazzieri, A. D’Amic,o, High-accuracy, high-precision DEM-CCII amplifiers. In Proceedings IEEE ISCAS, pp. 2196–2199 (2007)
E. Tlelo-Cuautle, A.C. Sanabria-Borbon, Optimising operational amplifiers by evolutionary algorithms and gm/Id method. Int. J. Electron. 103(10), 1–20 (2016)
E. Tlelo-Cuautle, C. Sanchez-Lopez, D. Moro-Frias, Symbolic analysis of (MO)(I)CCI(II)(III)-based analog circuits. Int. J. Circuit Theor. Appl. 38, 649–659 (2010)
C. Toumazou, A. Payne, D. Haigh, Analogue IC Design: The Current Mode Approach (Peter Peregrinus, London, 1990)
R. Trejo-Guerra, E. Tlelo-Cuautle, C. Cruz-Hernández, C. Sánchez-López, Chaotic communication system using Chua’s oscillators realized with CCII plus. Int. J. Bifurc. Chaos 19(12), 4217–4226 (2009)
R. Trejo-Guerra, E. Tlelo-Cuautle, C. Sanchez-Lopez, J.M. Munoz-Pacheco, C. Cruz-Hernandez, Realization of multiscroll chaotic attractors by using current-feedback operational amplifiers. Rev. Mex. Fis. 56(4), 268–274 (2010)
J.F. Witte, K.A. Makinwa, J.H. Huijsing, A CMOS Chopper offset-stabilized Opamp. In Proceedings IEEE ESSCIRC, vol. 1, pp. 360–363 (2006). doi:10.1109/ESSCIR.2006.307605
F. Yuan, Low-voltage CMOS current-mode preamplifier: analysis and design. IEEE Circuits Syst. Mag. 53(1), 26–39 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Colucci, P., D’Amico, A., De Marcellis, A. et al. CCII-Based Voltage Amplifier Optimization for Reduced Relative Gain Error. Circuits Syst Signal Process 37, 1315–1326 (2018). https://doi.org/10.1007/s00034-017-0590-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-017-0590-x