Abstract
Discrete fractional Fourier transform (DFrFT) is a powerful signal processing tool. This paper proposes a method for DFrFT-based image retrieval via Fisher discriminant and 1-NN classification rule. First, this paper proposes to extend the conventional discrete Fourier transform (DFT) descriptors to the DFrFT descriptors to be used for representing the edges of images. The DFrFT descriptors extracted from the training images are employed to construct a dictionary, for which the corresponding optimal rotational angles of the DFrFTs are required to be determined. This dictionary design problem is formulated as an optimization problem, where the Fisher discriminant is the objective function to be minimized. This optimization problem is nonconvex (Guan et al. in IEEE Trans Image Process 20(7):2030–2048, 2011; Ho et al. in IEEE Trans Signal Process 58(8):4436–4441, 2010). Furthermore, both the intraclass separation and interclass separation of the DFrFT descriptors are independent of the rotational angles if these separations are defined in terms of the 2-norm operator. To tackle these difficulties, the 1-norm operator is employed. However, this reformulated optimization problem is nonsmooth. To solve this problem, the nondifferentiable points of the objective function are found. Then, the stationary points between any two consecutive nondifferentiable points are identified. The objective function values are evaluated at these nondifferentiable points and these stationary points. The smallest L objective function values are picked up and the corresponding rotational angles are determined, which are then used to construct the dictionary. Here, L is the total number of the rotational angles of the DFrFTs used to construct the dictionary. Finally, an 1-NN classification rule is applied to perform the image retrieval. Application examples and experimental results show that our proposed method outperforms the conventional DFT approach.
Similar content being viewed by others
References
C.B. Akgül, B. Sankur, Y. Yemez, F. Schmitt, 3D model retrieval using probability density-based shape descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1117–1133 (2009)
M. Barni, A fast algorithm for 1-norm vector median filtering. IEEE Trans. Image Process. 6(10), 1452–1455 (1997)
W. Bian, X. Xue, Subgradient-based neural networks for nonsmooth nonconvex optimization problems. IEEE Trans. Neural Netw. 20(6), 1024–1038 (2009)
S. Dong, S. Kircher, M. Garland, Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comput. Aided Geom. Des. 22, 392–423 (2005)
N. Guan, D. Tao, Z. Luo, B. Yuan, Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans. Image Process. 20(7), 2030–2048 (2011)
Guangdong Intellectual Property Research and Development Center. http://183.62.9.134:8081/imgsearch.aspx. (2015)
S. Gundimada, V.K. Asari, Facial recognition using multisensor images based on localized kernel eigen spaces. IEEE Trans. Image Process. 18(6), 1314–1325 (2009)
C.Y.F. Ho, B.W.K. Ling, L. Benmesbah, T.C.W. Kok, W.-C. Siu, K.-L. Teo, Two-channel linear phase FIR QMF bank minimax design via global nonconvex optimization programming. IEEE Trans. Signal Process. 58(8), 4436–4441 (2010)
A.P. Karduck, A. Geiser, T. Gutekunts, Multimedia technology in banking. IEEE Multimed. 3(4), 82–86 (1996)
I. Kunttu, L. Lepistö, J. Rauhamaa, A. Visa, Multiscale Fourier descriptors for defect image retrieval. Pattern Recogn. Lett. 27(2), 123–132 (2006)
J. Ma, Z.-W. Zhang, H.-M. Tang, Q.-M. Zhao, Fast Fourier descriptor method of the shape feature in low resolution images. In 6th International Conference on Wireless Communications Networking and Mobile Computing, WiCOM, pp. 1–4 (2010)
L. Ma, T. Tan, Y. Wang, D. Zhang, Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Process. 13(6), 739–750 (2004)
G. Ou, L. Xie, B.W.-K. Ling, D. Lun, N. Cai, Q. Dai, Optimal discrete fractional Fourier transform descriptors for image retrieval. In International Symposium on Communication Systems, Networks, and Digital Signal Processing, CSNDSP (2014)
Y.S. Park, H.W. Park, Arbitrary-ratio image resizing using fast DCT of composite length for DCT-based transcoder. IEEE Trans. Image Process. 15(2), 494–500 (2006)
G. Quellec, M. Lamard, G. Cazuguel, B. Cochener, C. Roux, Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans. Image Process. 21(4), 1613–1623 (2012)
A. Serbes, L. Durak-Ata, The discrete fractional Fourier transform based on the DFT matrix. Signal Process. 91, 571–581 (2011)
L. Severa, L. Máchal, L. Švábová, O. Mamica, Evaluation of shape variability of stallion sperm heads by means of image analysis and Fourier descriptors. Anim. Reprod. Sci. 119(1–2), 50–55 (2010)
R.S. Subramaniam, B.W.-K. Ling, A. Georgaki, Filtering in rotated time-frequency domains with unknown noise statistics. IEEE Trans. Signal Process. 60(1), 489–493 (2012)
X. Tan, S. Chen, Z.-H. Zhou, F. Zhang, Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble. IEEE Trans. Neural Netw. 16(4), 875–886 (2005)
K. Todros, J. Tabrikian, QML-based joint diagonalization of positive-definite Hermitian matrices. IEEE Trans. Signal Process. 58(9), 4656–4673 (2010)
D. Wan, J. Zhou, Fingerprint recognition using model-based density map. IEEE Trans. Image Process. 15(6), 1690–1696 (2006)
M. Xu, X. Wu, P. Fränti, Context quantization by kernel Fisher discriminant. IEEE Trans. Image Process. 15(1), 169–177 (2006)
N.H.C. Yung, K.H. Au, A.H.S. Lai, Recognition of vehicle registration mark on moving vehicles in an outdoor environment. In IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, pp. 418–422 (1999)
D. Zhang, L. Guojun, Shape-based image retrieval using generic Fourier descriptor. Signal Process. Image Commun. 17(10), 825–848 (2002)
Y. Zhang, P.I. Rockett, The Bayesian operating point of the Canny edge detector. IEEE Trans. Image Process. 15(11), 3409–3416 (2006)
L. Zhu, H. Jin, R. Zheng, Q. Zhang, X. Xie, M. Guo, Content-based design patent image retrieval using structured features and multiple feature fusion. IN Sixth International Conference on Image and Graphics, ICIG, pp. 969–974 (2011)
Acknowledgments
This work was supported partly by the National Nature Science Foundation of China (No. 61372173), the Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent (No. 501130144), the Young Thousand People Plan from the Ministry of Education of China, and the State Scholarship Fund (No. 201608440315) from the China Scholarship Council. A preliminary version of this paper was presented at the 9th International Symposium on Communication Systems, Networks, and Digital Signal Processing and was published by IEEE. The authors would also like to thank Professor Kok Lay Teo of Curtin University for his modification, which have helped improve the quality and clarity of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, XZ., Ling, B.WK., Lun, D.PK. et al. Image Retrieval Based on Discrete Fractional Fourier Transform Via Fisher Discriminant. Circuits Syst Signal Process 36, 2012–2030 (2017). https://doi.org/10.1007/s00034-016-0392-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-016-0392-6