[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Class of Deterministic Sensing Matrices and Their Application in Harmonic Detection

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a class of deterministic sensing matrices are constructed by selecting rows from Fourier matrices. These matrices have better performance in sparse recovery than random partial Fourier matrices. The coherence and restricted isometry property of these matrices are given to evaluate their capacity as compressive sensing matrices. In general, compressed sensing requires random sampling in data acquisition, which is difficult to implement in hardware. By using these sensing matrices in harmonic detection, a deterministic sampling method is provided. The frequencies and amplitudes of the harmonic components are estimated from under-sampled data. The simulations show that this under-sampled method is feasible and valid in noisy environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. When N is a prime number and \(N \,\hbox { mod }\,4=1\), the corresponding matrices have worse sensing properties than the proposed matrices.

References

  1. R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi sums (Wiley, New York, 1998)

    MATH  Google Scholar 

  3. J. Bourgain, S.J. Dilworth, K. Ford, S.V. Konyagin, D. Kutzarova, Breaking the \(k^2\) barrier for explicit RIP matrices. in Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, 2011, pp. 637–644. ACM

  4. E.J. Candes, The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  6. X. Chen, Y. Zhang, Detection and analysis of power system harmonics based on FPGA. In: Wireless Communications and Applications (Springer, Berlin, 2012), pp. 445–454

  7. Y. Chen, Y. Chi, Robust spectral compressed sensing via structured matrix completion. IEEE Trans. Inf. Theory 60(10), 6576–6601 (2014)

    Article  MathSciNet  Google Scholar 

  8. R.A. DeVore, Deterministic constructions of compressed sensing matrices. J. Complex. 23(4), 918–925 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. M.F. Duarte, R.G. Baraniuk, Spectral compressive sensing. Appl. Comput. Harmon. Anal. 35(1), 111–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  11. J. Haupt, L. Applebaum, R. Nowak, in On the Restricted Isometry of Deterministically Subsampled Fourier matrices. in 2010 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE (2010)

  12. H. Lev-Ari, A.M. Stanković, S. Lin, Application of staggered undersampling to power quality monitoring. IEEE Trans. Power Deliv. 15(3), 864–869 (2000)

    Article  Google Scholar 

  13. T.L. Nguyen, Y. Shin, (2013) Deterministic sensing matrices in compressive sensing: a survey. Sci. World J

  14. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61(8), 1025–1045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Tang, B.N. Bhaskar, P. Shah, B. Recht, Compressed sensing off the grid. IEEE Trans. Inf. Theory 59(11), 7465–7490 (2013)

    Article  MathSciNet  Google Scholar 

  16. Y. Tang, G. Lv, K. Yin, Deterministic sensing matrices based on multidimensional pseudo-random sequences. Circ. Syst. Signal Process. 33(5), 1597–1610 (2014)

    Article  Google Scholar 

  17. J.A. Tropp, Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Xu, Z. Xu, Compressed sensing matrices from Fourier matrices. IEEE Trans. Inf. Theory 61(1), 469–478 (2015)

    Article  MathSciNet  Google Scholar 

  19. Z. Yang, L. Xie, Exact Joint Sparse Frequency Recovery Via Optimization Methods (2014). arXiv:1405.6585

  20. N.Y. Yu, Y. Li, Deterministic construction of Fourier-based compressed sensing matrices using an almost difference set. EURASIP J. Adv. Signal Process. 2013(1), 1–14 (2013)

    Article  Google Scholar 

  21. L. Zeng, X. Zhang, L. Chen, T. Cao, J. Yang, Deterministic construction of Toeplitzed structurally chaotic matrix for compressed sensing. Circ. Syst. Signal Process. 34(3), 797–813 (2015)

    Article  Google Scholar 

  22. H. Zhang, G. Bi, W. Yang, S.G. Razul, C.M.S. See, IF estimation of FM signals based on time-frequency image. IEEE Trans. Aerosp. Electron. Syst. 51(1), 326–343 (2015)

    Article  Google Scholar 

  23. H. Zhang, L. Yu, G.S. Xia, Iterative time-frequency filtering of sinusoidal signals with updated frequency estimation. IEEE Signal Process. Lett. 23(1), 139–143 (2016). doi:10.1109/LSP.2015.2504565

    Article  Google Scholar 

  24. H.Y. Zhang, X.P. Yan, D.P. Qi, W.H. Jiao: A precise method for detecting harmonics in electric power system based on wavelet package transform. In: Fuzzy Information and Engineering, vol. 2 (Springer, Berlin, 2009), pp. 347–356

  25. L. Zhao, G. Bi, L. Wang, H. Zhang, An improved auto-calibration algorithm based on sparse bayesian learning framework. IEEE Signal Process. Lett. 20(9), 889–892 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijian Zhang.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61501335 and in part by the Natural Science Foundation of Hubei Province (No. 2015CFB202).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Sun, H., Yu, L. et al. A Class of Deterministic Sensing Matrices and Their Application in Harmonic Detection. Circuits Syst Signal Process 35, 4183–4194 (2016). https://doi.org/10.1007/s00034-016-0245-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0245-3

Keywords

Navigation