[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A New Fractional-Order Chaotic System and Its Synchronization with Circuit Simulation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new fractional-order chaotic system is proposed in this paper, and a list of state trajectories is presented with fractional derivative of different areas. Furthermore, a circuit diagram is studied to realize the fractional-order chaotic system. The new fractional-order chaotic system can be controlled to reach synchronization based on the nonlinear control theory, and the results between numerical emulation and circuit simulation are in agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional order predator–prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Cafagna, G. Grassi, Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int. J. Bifurc. Chaos 18, 1845–1863 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. X.R. Chen, C.X. Liu, Chaos synchronization of fractional order unified chaotic system via nonlinear control. Int. J. Mod. Phys. B 25, 407–415 (2011)

    Article  MATH  Google Scholar 

  4. A.M. Chen, J.N. Lu, J.H. Lü, S.M. Yu, Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006)

    Article  Google Scholar 

  5. D.Y. Chen, C. Wu, C.F. Liu, X.Y. Ma, Synchronization and circuit simulation of a new double-wing chaos. Nonlinear Dyn. 67, 1481–1504 (2012)

    Article  MATH  Google Scholar 

  6. W.H. Deng, C.P. Li, Chaos synchronization of the fractional Lü system. Physica A, Stat. Mech. Appl. 353, 61–72 (2005)

    Article  Google Scholar 

  7. J.B. Hu, Y. Han, L.D. Zhao, Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15, 115–123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. C.G. Li, G.R. Chen, Chaos and hyperchaos in the fractional-order Rossler equations. Physica A, Stat. Mech. Appl. 341, 55–61 (2004)

    Article  Google Scholar 

  9. C.X. Liu, A hyperchaotic system and its fractional order circuit simulation. Acta Phys. Sin. 56, 6865–6873 (2007). (In Chinese)

    MATH  Google Scholar 

  10. C.X. Liu, J.J. Lu, A novel fractional-order hyperchaotic system and its circuit realization. Int. J. Mod. Phys. B 24, 1299–1307 (2010)

    Article  MathSciNet  Google Scholar 

  11. J.G. Lu, Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 305–311 (2006)

    Article  Google Scholar 

  12. D. Matignon, Stability results for fractional differential equations with applications to control processing, in Computational Engineering in Systems and Application Multi-conference, IMACS, in IEEE-SMC Proceeding, Lille, France, July 1996, vol. 2 (1996), pp. 963–968

    Google Scholar 

  13. A.E. Matouk, Chaos, feedback control and synchronization of a fractional-order modified autonomous van der Pol–Duffing circuit. Commun. Nonlinear Sci. Numer. Simul. 16, 975–986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Mohraz, D.B. Moler, R.M. Ziff, Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Phys. Rev. Lett. 92, 155503 (2004)

    Article  Google Scholar 

  15. Z.M. Odibat, Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Z.M. Odibat, N. Corson, M.A. Aziz-Alaoui, Synchronization of chaotic fractional-order systems via linear control. Int. J. Bifurc. Chaos 20, 81–97 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Pauly, V. Christensen, Primary production required to sustain global fisheries. Nature 374, 255–257 (1995)

    Article  Google Scholar 

  18. G.J. Peng, Y.L. Jiang, F. Chen, Generalized projective synchronization of fractional order chaotic systems. Physica A, Stat. Mech. Appl. 387, 3738–3746 (2008)

    Article  Google Scholar 

  19. I. Petras, Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II, Express Briefs 57, 975–979 (2010)

    Article  Google Scholar 

  20. L. Song, J.Y. Yang, S.Y. Xu, Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Anal., Theory Methods Appl. 72, 2326–2336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. J.C. Sprott, A new chaotic Jerk circuit. IEEE Trans. Circuits Syst. II, Express Briefs 58, 240–243 (2011)

    Article  Google Scholar 

  22. A. Vecchio, LISA observations of rapidly spinning massive black hole binary systems. Phys. Rev. D 70, 042001 (2004)

    Article  Google Scholar 

  23. X.Y. Wang, M.J. Wang, Dynamics analysis of the fractional-order Liu system and its synchronization. Chaos 17, 033106 (2007)

    Article  Google Scholar 

  24. J.W. Wang, Y.B. Zhang, Network synchronization in a population of star-coupled fractional nonlinear oscillators. Phys. Lett. A 374, 1464–1468 (2010)

    Article  MATH  Google Scholar 

  25. X.J. Wu, J. Li, G.R. Chen, Chaos in the fractional order unified system and its synchronization. J. Franklin Inst. 345, 392–401 (2008)

    Article  MATH  Google Scholar 

  26. J. Zhang, J. Sun, X. Luo, K. Zhang, T. Nakamura, M. Small, Characterizing topology of pseudoperiodic time series via complex network approach. Physica D 237, 2856–2865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. R.X. Zhang, S.P. Yang, Y.L. Liu, Synchronization of fractional-order unified chaotic system via linear control. Acta Phys. Sin. 59, 1549–1553 (2010). (In Chinese)

    MATH  Google Scholar 

  28. H. Zhu, S.B. Zhou, J. Zhang, Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals 39, 1595–1603 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their useful comments and suggestions on our manuscript. This work was supported by the scientific research foundation of National Natural Science Foundation (No. 51109180), (No. 11161051), Personnel Special Fund of North West A&F University (RCZX-2009-01), the Natural Science Foundation of Guangxi Province (Grant No. 2012GXNSFAA053014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Liu, C., Wu, C. et al. A New Fractional-Order Chaotic System and Its Synchronization with Circuit Simulation. Circuits Syst Signal Process 31, 1599–1613 (2012). https://doi.org/10.1007/s00034-012-9408-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9408-z

Keywords

Navigation