[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A CMOS Quadrature LC Oscillator using Automatic Phase/Amplitude Calibration

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel LC quadrature oscillator (QO) is presented that can simply and automatically cancel the phase and amplitude errors raised by mismatches in LC tanks; the major source of phase and amplitude errors. The design is based on method of using unequal coupling factors in a parallel quadrature oscillator (P-QO). This method shows how we can cancel phase and amplitude errors simultaneously by choosing appropriate inversely proportional coupling factors. To cancel the errors, the proposed circuits first sense the phase error and increase or decrease the difference between the coupling factors accordingly. When tuning tail currents, the coupling factors can be simply adjusted. The entire system has a block diagram like a PLL. The dynamics of the proposed circuit is analyzed, and it is shown how the phase and amplitude error is canceled in response to an imposed LC tank mismatch. To evaluate the circuit, a QO has been designed to oscillate at 5 GHz with 1.8 V supply and 6.2 mA current consumption. The circuit has been simulated using TSMC 0.18 CMOS practical model where all the results confirm the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K. Ahn, I.-C. Park, B. Kim, A 5-GHz self-calibrated I/Q clock generator using a quadrature LC-VCO, in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 1 (2003), pp. 797–800

    Google Scholar 

  2. R. Ahola et al., A single-chip CMOS transceiver 802.11a/b/g wireless LANs. IEEE J. Solid-State Circuits 39, 2250–2258 (2004)

    Article  Google Scholar 

  3. F. Behbahani, Y. Kishigami, J. Leete, A.A. Abidi, CMOS mixers and polyphase filters for large image rejection. IEEE J. Solid-State Circuits 36(6), 873–887 (2001)

    Article  Google Scholar 

  4. M. Brownlee, P.K. Hanumolu, K. Mayaram, U.K. Moon, A 0.5-GHz to 2.5-GHz PLL with fully differential supply regulated tuning. IEEE J. Solid-State Circuits, 41(12), 2720–2728 (2006)

    Article  Google Scholar 

  5. S. Byun, K.W. Kim, D.H. Lee, J. Laskar, C.S. Ki, A self-calibrated LC quadrature VCO in a current-limited region, in IEEE Radio Frequency Integrated Circuits Symposium (2008)

    Google Scholar 

  6. I.R. Chamas, S. Raman, A comprehensive analysis of quadrature signal synthesis in cross-coupled RF VCOs. IEEE Trans. Circuits Syst. I 54(4) (2007)

  7. I.R. Chamas, S. Raman, Analysis and design of a CMOS phase-tunable injection-coupled LC quadrature VCO (PTIC-QVCO). IEEE J. Solid-State Circuits 44(3) (2009)

  8. B. Come, R. Ness, S. Donnay, L. Van der Perre, W. Eberle, P. Wambacq, M. Engels, I. Bolsens, Impact of front-end nonidealities on bit error rate performance of WLAN-OFDM transceivers, in Proc. RAWCON (2000), pp. 91–94

    Google Scholar 

  9. L. Der, B. Razavi, A 2-GHz GMOS image-reject receiver with LMS calibration. IEEE J. Solid-State Circuits 38, 167–175 (2003)

    Article  Google Scholar 

  10. S. Docking, M. Sachdev, A method to derive an equation for the oscillation frequency of a ring oscillator. IEEE Trans. Circuits Syst. I 50, 259–264 (2003)

    Article  Google Scholar 

  11. S. Docking, M. Sachdev, An analytical equation for the oscillation frequency of high-frequency ring oscillators. IEEE Trans. Circuits Syst. 39(3), 533–537 (2004)

    Google Scholar 

  12. C. Enz, Y. Cheng, MOS transistor modeling for RF IC design. IEEE J. Solid-State Circuits 35, 186–201 (2000)

    Article  Google Scholar 

  13. H. GHonoodi, H.M. Naimi, A Phase and amplitude tunable quadrature LC oscillator: analysis and design. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 58(4), 873–887 (2011)

    MathSciNet  Google Scholar 

  14. P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th edn. (Wiley, New York, 2001)

    Google Scholar 

  15. Y.-H. Hsieh et al., An auto-I/Q calibrated CMOS transceiver for 802.11 g. IEEE J. Solid-State Circuits 40, 2187–2192 (2005)

    Article  Google Scholar 

  16. D.K. Ma, J.R. Long, A subharmonically injected LC delay line oscillator for 17-GHz quadrature LO generation. IEEE J. Solid-State Circuits 39, 1434–1445 (2004)

    Article  Google Scholar 

  17. J.P. Maligeorgos, J.R. Long, A low-voltage 5.1–5.8 GHz image-reject receiver with wide dynamic range. IEEE J. Solid-State Circuits 35(12), 1917–1926 (2000)

    Article  Google Scholar 

  18. A. Mazzanti, F. Svelto, A 1.8-GHz injection-locked quadrature CMOS VCO with low phase noise and high phase accuracy. IEEE Transaction on Circuits and System 53(3) (2006)

  19. A. Mirzaei, M.E. Heidari, R. Bagheri, S. Chehrazi, A.A. Abidi, The quadrature LC oscillator: a complete portrait based on injection locking. IEEE J. Solid-State Circuits 42(9) (2007)

  20. B. Razavi, Desing of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001). Chapter 14

    Google Scholar 

  21. B. Razavi, Desing of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001), pp. 516–520

    Google Scholar 

  22. A. Rofougaran, J. Rael, M. Rofougaran, A. Abidi, A 900 MHz CMOS LC-oscillator with quadrature outputs, in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers (1996), pp. 392–393

    Chapter  Google Scholar 

  23. L. Romanò, S. Levantino, C. Samori, A.L. Lacaita, Multiphase LC oscillators. IEEE Trans. Circuits Syst. II 53(7) (2006)

  24. J. van der Tang, P. van der Ven, D. Kasperkovitz, A. van Roermund, Analysis and design of an optimally coupled 5-GHz quadrature LC oscillator. IEEE J. Solid-State Circuits 37(5), 657–661 (2002)

    Article  Google Scholar 

  25. I. Vassiliou et al., A single-chip digitally calibrated 5.15–5.825-GHz 0.18 μm CMOS transceiver for 802.11a wireless LAN. IEEE J. Solid-State Circuits 38, 2221–2231 (2003)

    Article  Google Scholar 

  26. K. Vavelidis et al., A dual-band 5.15–5.35 GHz, 2.4–2.5 GHz 0.18 μm CMOS transceiver for 802.11a/b/g wireless LAN. IEEE J. Solid-State Circuits 39(7), 1180–1184 (2004)

    Article  Google Scholar 

  27. S.H. Wang, J. Gil, I. Kwon, H.K. Ahn, H. Shin, B. Kim, A 5-GHz band I/Q clock generator using a self-calibration technique, in Proc. of 28th Eur. Solid-State Circuits Conf. (2002), pp. 807–810

    Google Scholar 

  28. M. Zannoth et al., A highly integrated dual-band multimode wireless LAN transceiver. IEEE J. Solid-State Circuits 39(7), 1191–1195 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojat Ghonoodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghonoodi, H., Naimi, H.M. A CMOS Quadrature LC Oscillator using Automatic Phase/Amplitude Calibration. Circuits Syst Signal Process 31, 77–91 (2012). https://doi.org/10.1007/s00034-011-9321-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9321-x

Keywords

Navigation