[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Passivity-based Control for Markovian Jump Systems via Retarded Output Feedback

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of passivity-based control for Markovian jump systems via retarded output feedback controllers. A delay-dependent passivity criterion is obtained in terms of linear matrix inequalities. Based on this, a sufficient condition is proposed for the design of a retarded output feedback controller which ensures that the closed-loop system is passive. By using the sequential linear programming matrix method, a desired retarded output feedback controller can be constructed. Numerical examples are provided to demonstrate the advantage and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Basin, D. Calderon-Alvarez, Alternative optimal filter for linear systems with multiple state and observation delays. Int. J. Innov. Comput. Inf. Control 4, 2889–2898 (2008)

    Google Scholar 

  2. E.K. Boukas, Free-weighting matrices delay-dependent stabilization for systems with time-varying delays. ICIC Express Lett. 2, 167–173 (2008)

    MathSciNet  Google Scholar 

  3. E.-K. Boukas, Z.-K. Liu, Deterministic and Stochastic Time Delay Systems (Birkhäuser, Boston, 2002)

    Book  MATH  Google Scholar 

  4. B. Du, J. Lam, Stability analysis of static recurrent neural networks using delay-partitioning and projections. Neural Netw. 22, 343–347 (2009)

    Article  Google Scholar 

  5. Z. Fei, H. Gao, P. Shi, New results on stabilization of Markovian jump systems with mode-dependent time delay. Automatica 45, 2300–2306 (2009)

    Article  MATH  Google Scholar 

  6. E. Fridman, New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett. 43, 309–319 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Fu, G. Duan, Stochastic stabilizability and passive control for time-delay systems with Markovian jumping parameters, in 8th International Conference on Control, Automation, Robotics and Vision, Kunming, China, December (2004), pp. 1757–1761

    Google Scholar 

  8. C. Gong, B. Su, Delay-dependent robust stabilization for uncertain stochastic fuzzy system with time-varying delays. Int. J. Innov. Comput. Inf. Control 5, 1429–1440 (2009)

    Google Scholar 

  9. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhäuser, Boston, 2003)

    Book  MATH  Google Scholar 

  10. Y. He, Q.-G. Wang, L. Xie, C. Lin, Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Autom. Control 52, 293–299 (2007)

    Article  MathSciNet  Google Scholar 

  11. H. Karimi, H. Gao, LMI-based H synchronization of second-order neutral master–slave systems using delayed output feedback control. Int. J. Control. Autom. Syst. 7, 371–380 (2009)

    Article  Google Scholar 

  12. F. Leibfritz, An LMI-based algorithm for designing suboptimal static H 2 and H output feedback controllers. SIAM J. Control Optim. 39, 1711–1735 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Li, B. Chen, Q. Zhou, S. Fang, Robust exponential stability for uncertain stochastic neural networks with discrete and distributed time-varying delays. Phys. Lett. A 372, 3385–3394 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Li, B. Chen, Q. Zhou, W. Qian, Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39, 94–102 (2009)

    Article  Google Scholar 

  15. R. Lozano, B. Brogliato, O. Egeland, B. Maschke, Dissipative Systems Analysis and Control: Theory and Applications (Springer, London, 2002)

    Google Scholar 

  16. M.S. Mahmoud, Passivity and passification of jump time-delay systems. IMA J. Math. Control Inf. 23, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. S.K. Nguang, W. Assawinchaichote, P. Shi, H filter for uncertain Markovian jump nonlinear systems: an LMI approach. Circuits Syst. Signal Process. 28, 853–874 (2007)

    Article  MathSciNet  Google Scholar 

  18. S.-I. Niculescu, R. Lozano, On the passivity of linear delay systems. IEEE Trans. Autom. Control 46, 460–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Parlakci, Robust stability of uncertain neutral systems: a novel augmented Lyapunov functional approach. IET Control Theory Appl. 1, 802–809 (2007)

    Article  MathSciNet  Google Scholar 

  20. C. Peng, Y. Tian, Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. IET Control Theory Appl. 2, 752–761 (2008)

    Article  MathSciNet  Google Scholar 

  21. K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  22. J. Qiu, K. Lu, New robust passive stability criteria for uncertain singularly Markov jump systems with time delays. ICIC Express Lett. 3, 651–656 (2009)

    Google Scholar 

  23. P. Shi, M. Karan, C.Y. Kaya, Robust Kalman filter design for Markovian jump linear systems with norm-bounded unknown nonlinearities. Circuits Syst. Signal Process. 24, 135–150 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Shi, Y. Xia, G.P. Liu, D. Rees, On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Autom. Control 51, 97–103 (2006)

    Article  MathSciNet  Google Scholar 

  25. X. Sun, Q. Zhang, Delay-dependent robust stabilization for a class of uncertain singular delay systems. Int. J. Innov. Comput. Inf. Control 5, 1231–1242 (2009)

    Google Scholar 

  26. G. Wang, Q. Zhang, V. Sreeram, Design of reduced-order H filtering for Markovian jump systems with mode-dependent time delays. Signal Process. 89, 187–196 (2009)

    Article  MATH  Google Scholar 

  27. L. Wu, W. Zheng, Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45, 2120–2127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Wu, W.X. Zheng, Robust passivity analysis of delayed singular systems subject to parametric uncertainties, in Proc. IEEE Int. Symp. on CAS, Taipei, Taiwan (2009), pp. 2890–2893

    Google Scholar 

  29. S. Xu, Y. Chu, J. Lu, Y. Zou, Exponential dynamic output feedback controller design for stochastic neutral with distributed delays. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 36, 540–547 (2006)

    Article  Google Scholar 

  30. S. Xu, J. Lam, X. Mao, Delay-dependent H control and filtering for uncertain Markovian jump systems with time-varying delays. IEEE Trans. Circuits Syst. I 54, 2070–2077 (2007)

    Article  MathSciNet  Google Scholar 

  31. X. Yao, L. Wu, W. Zheng, C. Wang, Passivity analysis and passification of Markovian jump systems. Circuit Syst. Signal Process. 29, 709–725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Zhang, T. Wang, S. Tong, Delay-dependent stabilization conditions and control of T-S fuzzy systems with time-delay. ICIC Express Lett. 3, 871–876 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyuan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, H., Xu, S., Song, X. et al. Passivity-based Control for Markovian Jump Systems via Retarded Output Feedback. Circuits Syst Signal Process 31, 189–202 (2012). https://doi.org/10.1007/s00034-011-9328-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9328-3

Keywords

Navigation