[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Robust Stability of Discrete Bilinear Uncertain Time-Delay Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses the problem of robust stability for discrete homogeneous bilinear time-delay systems subjected to uncertainties. Two kinds of uncertainties are treated: (1) nonlinear uncertainties and (2) parametric uncertainties. For parametric uncertainties, we also discuss both unstructured uncertainties and interval matrices. By using the Lyapunov stability theorem associated with some linear algebraic techniques, several delay-independent criteria are developed to guarantee the robust stability of the overall system. One of the features of the newly developed criteria is its independence from the Lyapunov equation, although the Lyapunov approach is adopted. Furthermore, the transient response and the decay rate of the resulting systems are also estimated. In particular, the transient responses for the aforementioned systems with parametric uncertainties also do not involve any Lyapunov equation which remains unsolved. All the results obtained are also applied to solve the stability analysis of uncertain time-delay systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bacic, M. Cannon, B. Kouvaritakis, Constrained control of SISO bilinear system. IEEE Trans. Autom. Control 48, 1443–1447 (2003)

    Article  MathSciNet  Google Scholar 

  2. L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems. Syst. Control Lett. 36, 167–171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Bose, M.Q. Chen, BIBO stability of the discrete bilinear system. Digit. Signal Process. 5, 160–166 (1995)

    Article  Google Scholar 

  4. O. Chabour, J.C. Vivalda, Remark on local and global stabilization of homogeneous bilinear systems. Syst. Control Lett. 41, 141–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. L.K. Chen, R.R. Mohler, Stability analysis of bilinear systems. IEEE Trans. Autom. Control 36, 1310–1315 (1991)

    Article  MathSciNet  Google Scholar 

  6. Y.P. Chen, J.L. Chang, K.M. Lai, Stability analysis and bang-bang sliding control of a class of single-input bilinear systems. IEEE Trans. Autom. Control 45, 2150–2154 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.S. Chiou, F.C. Kung, T.H.S. Li, Robust stabilization of a class of singular perturbed discrete bilinear systems. IEEE Trans. Autom. Control 45, 1187–1191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. H.Y. Chung, W.J. Chang, Input and state covariance control for bilinear stochastic discrete systems. Control Theory Adv. Technol. 6, 655–667 (1990)

    MathSciNet  Google Scholar 

  9. I. Derese, E. Noldus, Design of linear feedback laws for bilinear systems. Int. J. Control 31, 213–237 (1980)

    Article  MathSciNet  Google Scholar 

  10. C. Gounaridis-minaidis, N. Kalouptsidis, Stability of discrete-time bilinear systems with constant inputs. Int. J. Control 43, 663–669 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Guojun, Stability of bilinear time-delay systems. IMA J. Math. Control Inf. 18, 53–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. D.W.C. Ho, G. Lu, Y. Zheng, Global stabilization for bilinear systems with time delay. IEE Proc., Control Theory Appl. 149, 89–94 (2002)

    Article  Google Scholar 

  13. M. Jamshidi, A near-optimum controller for cold-rolling mills. Int. J. Control 16, 1137–1154 (1972)

    Article  Google Scholar 

  14. H. Jerbi, Global feedback stabilization of new class of bilinear systems. Syst. Control Lett. 42, 313–320 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. B.S. Kim, Y.J. Kim, M.T. Lim, Robust H state feeback control methods for bilinear systems. IEE Proc., Control Theory Appl. 152, 553–559 (2005)

    Article  Google Scholar 

  16. S. Kotsios, A note on BIBO stability of bilinear systems. J. Franklin Inst. 332B, 755–760 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. C.H. Lee, Upper and lower matrix bounds of the solution for the discrete Lyapunov equation. IEEE Trans. Autom. Control 41, 1338–1341 (1996)

    Article  MATH  Google Scholar 

  18. C.S. Lee, G. Leitmann, Continuous feedback guaranteeing uniform ultimate boundness for uncertain linear delay systems: An application to river pollution control. Comput. Math. Appl. 16, 929–938 (1983)

    Article  MathSciNet  Google Scholar 

  19. C.H. Lee, T.-H.S. Li, F.C. Kung, New stability criteria for discrete time-delay systems with uncertainties. Control Theory Adv. Technol. 10, 1159–1168 (1995)

    MathSciNet  Google Scholar 

  20. G. Lu, D.W.C. Ho, Global stabilization controller design for discrete-time bilinear systems with time-delays, in Proceedings of the 4th World Congress on Intelligent Control and Automation (2002), pp. 10–14

    Google Scholar 

  21. G. Lu, D.W.C. Ho, Continuous stabilization controllers for singular bilinear systems: The state feedback case. Automatica 42, 309–314 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Mao, J. Lam, L. Huang, Stabilization of hybrid stochastic differential equations by delay feedback control. Syst. Control Lett. 57(11), 927–935 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Mori, N. Fukuma, M. Kuwahara, Delay-independent stability criteria for single and composite linear systems with time delays. IEEE Trans. Autom. Control 27, 964–966 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Schwarz, Stability of discrete-time equivalent homogeneous bilinear systems. Control Theory Adv. Technol. 3, 263–269 (1987)

    Google Scholar 

  25. H.W. Smith, Dynamic control of a two-stand cold mill. Automatica 5, 183–190 (1969)

    Article  Google Scholar 

  26. S.B. Stojanovic, D.Lj. Debeljkovic, Stability of linear discrete time delay systems: Lyapunov-Krasovskii approach, in The 4th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China (2009), pp. 2497–2501

    Chapter  Google Scholar 

  27. C.W. Tao, W.Y. Wang, M.L. Chan, Design of sliding mode controllers for bilinear systems with time varying uncertainties. IEEE Trans. Syst. Man Cybern.. Part B 34, 639–645 (2004)

    Article  Google Scholar 

  28. M. Vidyasagar, Nonlinear Systems Analysis, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  29. J. Xing, J. Lam, Stabilization of discrete-time Markovian jump linear systems via delayed controllers. Automatica 42, 747–753 (2006)

    Article  Google Scholar 

  30. S. Xu, G. Feng, Improved robust absolute stability criteria for uncertain time-delay systems. IET Control Theory Appl. 1, 1630–1637 (2007)

    Article  Google Scholar 

  31. S. Xu, J. Lam, A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 39, 1095–1113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Xu, J. Lam, X. Mao, Delay-dependent H control and filtering for uncertain Markovian jump systems with time-varying delays. IEEE Trans. Circuits Syst. I 54, 2070–2077 (2007)

    Article  MathSciNet  Google Scholar 

  33. X. Yang, L.K. Chen, Stability of discrete bilinear systems with time-delayed feedback functions. IEEE Trans. Autom. Control 38, 158–163 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Hua Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsien, TL., Lee, CH. Robust Stability of Discrete Bilinear Uncertain Time-Delay Systems. Circuits Syst Signal Process 30, 1417–1443 (2011). https://doi.org/10.1007/s00034-011-9298-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9298-5

Keywords

Navigation