[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Stabilization of Delayed Chaotic Neural Networks by Periodically Intermittent Control

  • Published:
Circuits, Systems & Signal Processing Aims and scope Submit manuscript

Abstract

This paper studies the exponential stabilization of delayed chaotic neural networks (DCNNs) using what is called periodically intermittent control. An exponential stability criterion for the controlled neural networks, together with its simplified version, is established by using the Lyapunov function and Halanay inequality. The feasible region of control parameters is estimated in a rigorous way. Theoretical results and numerical simulations show that the continuous-time DCNN can be stabilized by intermittent feedback control with nonzero duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Carr, I.B. Schwartz, Controlling unstable steady states using system parameter variation and control duration. Phys. Rev. E 50(5), 3410–3415 (1994)

    Article  Google Scholar 

  2. T.W. Carr, I.B. Schwartz, Controlling the unstable steady state in a multimode laser. Phys. Rev. E 51(5), 5109–5111 (1995)

    Article  Google Scholar 

  3. T.W. Carr, I.B. Schwartz, Controlling high-dimensional unstable steady states using delay, duration and feedback. Physica D 96, 1–25 (1996)

    Article  Google Scholar 

  4. B. Chen, X.P. Liu, S.C. Tong, Guaranteed cost control of time-delay chaotic systems via memoryless state feedback. Chaos, Solitons Fractals 34, 1683–1688 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Dai, X. Ma, Chaos synchronization by using intermittent parametric adaptive control method. Phys. Lett. A 288, 23–28 (2001)

    Article  MATH  Google Scholar 

  6. L.M. Duan, G.C. Guo, Suppressing environmental noise in quantum computation through pulse control. Phys. Lett. A 261, 139–144 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Z.H. Guan, G. Chen, On delayed impulsive Hopfield neural networks. Neural Netw. 12, 273–280 (1999)

    Article  Google Scholar 

  8. A. Halanay, Differential Equations: Stability, Oscillations, Time Lags (Academic Press, San Diego, 1966)

    MATH  Google Scholar 

  9. C.D. Li, G. Feng, X. Liao, Stabilization of nonlinear systems via periodically intermittent control. IEEE Trans. Circuits Syst. II: Express Briefs 54, 1019–1023 (2007)

    Article  Google Scholar 

  10. C.D. Li, X.F. Liao, T.W. Huang, Exponential stabilization of chaotic systems with delay by periodically intermittent control. Chaos 17, 013103 (2007)

    Article  MathSciNet  Google Scholar 

  11. H.T. Lu, Chaotic attractors in delayed neural networks. Phys. Lett. A 298, 109–116 (2002)

    Article  MATH  Google Scholar 

  12. T.L. Montgomery, J.W. Frey, W.B. Norris, Intermittent control systems. Environ. Sci. Technol. 9(6), 528–532 (1975)

    Article  Google Scholar 

  13. E.N. Sanchez, J.P. Perez, Input-to-state stability (ISS) analysis for dynamic NN. IEEE Trans. Circuits Syst. I, Regul. Pap. 46(11), 1395–1398 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Starrett, Control of chaos by occasional bang-bang. Phys. Rev. E 67, 036203 (2003)

    Article  Google Scholar 

  15. J. Sun, Delay-dependent stabilization criteria for time-delay chaotic systems via time-delay feedback control. Chaos, Solitons Fractals 21(2), 143–150 (2004)

    Article  MathSciNet  Google Scholar 

  16. L. Viola, S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)

    Article  MathSciNet  Google Scholar 

  17. L. Viola, E. Knill, S. Lloyd, Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Yang, Impulsive Systems and Control: Theory and Application (Nova Science Publishers, New York, 2001)

    Google Scholar 

  19. P. Zanardi, Symmetrizing evolutions. Phys. Lett. A 258, 77–82 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Zhang, Z.W. Zhou, G.C. Guo, Decoupling neighboring qubits in quantum computers through bang-bang pulse control. Phys. Lett. A 327, 391–396 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Zochowski, Intermittent dynamical control. Physica D 145, 181–190 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Additional information

The work described in this paper was partially supported by NSFC (Grant No. 60574024) and Program for New Century Excellent Talents in University of China (NCET-06-0764).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Li, C. & Han, Q. Stabilization of Delayed Chaotic Neural Networks by Periodically Intermittent Control. Circuits Syst Signal Process 28, 567–579 (2009). https://doi.org/10.1007/s00034-009-9098-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-009-9098-3

Keywords

Navigation