Abstract
In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.
Similar content being viewed by others
References
Amick C.J., Fraenkel L.E., Toland J.F.: On the Stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982)
Banner M.L., Peregrine D.H.: Wave breaking in deep water. Annu. Rev. Fluid Mech. 25, 373–397 (1993)
Byrd P.F., Friedman M.D.: Handbook of Elliptic Integrals for engineers and scientists. Springer-Verlag, Berlin, Heidelberg, New York (1971)
Constantin A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)
Constantin A.: Comment on “Steep Sharp-Crested Gravity Waves on Deep Water”. Phys. Rev. Lett. 93, 069402 (2004)
Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)
Constantin, A.: Nonlinear water waves with applications to wave-current interactions and tsunamis. CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)
Constantin A., Ehrnström M., Villari G.: Particle trajectories in linear deep-water waves. Nonlinear Anal. Real World Appl. 9, 1336–1344 (2008)
Constantin A., Escher J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)
Constantin A., Escher J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)
Constantin A., Varvaruca E.: Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Ration. Mech. Anal. 199, 33–67 (2011)
Constantin A., Villari G.: Particle trajectories in linear water waves. J. Math. Fluid Mech. 10, 1–18 (2008)
Constantin A., Strauss W.: Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57, 481–527 (2004)
Constantin A., Strauss W.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)
Constantin A., Strauss W.: Periodic traveling gravity water waves with discontinuous vorticity. Arch. Ration. Mech. Anal. 202, 133–175 (2011)
Debnath L.: Nonlinear Water Waves. Academic Press Inc., Boston (1994)
Dubreil-Jacotin M.-L.: Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl. 13, 217–291 (1934)
Ehrnström M., Villari G.: Linear water waves with vorticity: Rotational features and particle paths. J. Diff. Equ. 244, 1888–1909 (2008)
Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)
Goyon R.: Contribution à à la théorie des houles. Ann. Fac. Sci. Univ. Toulouse 22, 1–55 (1958)
Henry, D.: The trajectories of particles in deep-water Stokes waves. Int. Math. Res. Not., Art. ID 23405, 13 pp. (2006)
Henry D.: Particle trajectories in linear periodic capillary and capillary-gravity water waves. Phil. Trans. R. Soc. A 365, 2241–2251 (2007)
Henry D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)
Ionescu-Kruse D.: Particle trajectories in linearized irrotational shallow water flows. J. Nonlinear Math. Phys. 15, 13–27 (2008)
Ionescu-Kruse D.: Particle trajectories beneath small amplitude shallow water waves in constant vorticity flows. Nonlinear Anal-Theor 71, 3779–3793 (2009)
Ionescu-Kruse D.: Exact solutions for small-amplitude capillary-gravity water waves. Wave Motion 46, 379–388 (2009)
Ionescu-Kruse D.: Small-amplitude capillary-gravity water waves: exact solutions and particle motion beneath such waves. Nonlinear Anal. Real World Appl. 11, 2989–3000 (2010)
Ionescu-Kruse D.: Peakons arising as particle paths beneath small-amplitude water waves in cosntant vorticity flows. J. Nonlinear Math. Phys. 17, 415–422 (2010)
Ionescu-Kruse D.: Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Comm. Pure Appl. Anal. 11, 1475–1496 (2012)
Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge Univeristy Press, Cambridge (1997)
Kalisch H.: Periodic traveling water waves with isobaric streamlines. J. Nonlinear Math. Phys. 11, 461–471 (2004)
Lamb H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1953)
Lewy H.: A note on harmonic functions and a hydrodynamical application. Proc. Am. Math. Soc. 3, 111–113 (1952)
Lighthill J.: Waves in Fluids. Cambridge University Press, Cambridge (2001)
Lukomsky V., Gandzha I., Lukomsky D.: Steep sharp-crested gravity waves on deep water. Phys. Rev. Lett. 89, 164502 (2002)
Matioc, A.-V.: On particle trajectories in linear deep-water waves. arXiv:1111.2490, pp. 1–12
Matioc, B.V.: On the regularity of deep-water waves with general vorticity distributions. Quart. Appl. Math. (2012, to appear)
Plotnikov, P.I.: Proof of the Stokes conjecture in the theory of surface waves. Dinamika Sploshn. Sredy, 57 (1982), 41–76 (in Russian); English transl.: Stud. Appl. Math, 108 (2002), 217–244
Rankine W.J.M.: On the exact form of waves near the surface of deep water. Phil. Trans. R. Soc. A 153, 127–138 (1863)
Smirnov, V.: Cours de Mathématiques supérieures, Tome III, deuxième partie. Mir, Moscou (1972)
Stokes, G.G.: Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. Mathematical Physiscs Papers, vol. I, pp. 225–228. Cambridge University Press, Cambridge (1880)
Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)
Varvaruca E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Diff. Equ. 246, 4043–4076 (2009)
Wahlen E.: Steady water waves with a critical layer. J. Diff. Eq. 246, 2468–2483 (2009)
Zeidler E.: Existenzbeweis für permanente Kapillar-Schwerewellen mit allgemeinen Wirbelverteilungen. Arch. Rational Mech. Anal. 50, 34–72 (1973)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Constantin
Rights and permissions
About this article
Cite this article
Ionescu-Kruse, D. On the Particle Paths and the Stagnation Points in Small-Amplitude Deep-Water Waves. J. Math. Fluid Mech. 15, 41–54 (2013). https://doi.org/10.1007/s00021-012-0102-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00021-012-0102-5