[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Characterization of controllability via a regular function: Example of the vibrating string

  • Contributed Papers
  • Conference paper
  • First Online:
System Modelling and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 197))

  • 1340 Accesses

Abstract

We study, in the case of a point-controlled vibrating string, two real valued functions of a structural parameter which reflect, in some way, the degree of controllability of the system. These functions may be seen as realistic connections between non-robust binary notions of controllability and the continuous solutions of well-posed control problems. The classical controllability property may be characterized via a regularity argument : the system is controllable if and only if the considered functions are differentiable and non-controllability corresponds to cusp points with negative concavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A ANDRONOV, L.S. PONTRYAGIN (1956). Systèmes grossiers. Œuvres complètes d'Andronov. Editions de l'académie des sciences d'URSS.

    Google Scholar 

  2. F. CONRAD (1992). Stabilization of second order evolution equations by unbounded non linear feedback. Research report, INRIA, may 1992.

    Google Scholar 

  3. F. CONRAD (1993). Private correspondence.

    Google Scholar 

  4. R.F. CURTAINS, A.J. PRITCHARD (1978). Infinite dimensional linear systems theory. Lecture notes in control and information sciences. vol. 8. Springer-Verlag.

    Google Scholar 

  5. X. GUANGQIAN, P.M. BAINUM (1992). Actuator placement using degree of controllability for discrete-time systems. Transaction of ASME, vol. 114, pp. 508–516.

    Article  MATH  Google Scholar 

  6. R.E. KALMAN, Y.C. HO, K.S. NARENDRA (1961). Controllability of linear dynamical systems. Contributions to Differential Equations, vol. 1, No. 2, pp. 182–213.

    MathSciNet  Google Scholar 

  7. C.D. JOHNSON (1969). Optimization of a certain quality of complete controllability and observation for linear dynamical systems. ASME journal of basic engineering, vol.191, pp. 228–238.

    Article  Google Scholar 

  8. S. JAFFARD. Sur le contrôle ponctuel des cordes vibrantes et des poutres. Preprint.

    Google Scholar 

  9. J.L. LIONS (1989). Contrôlabilité exacte. Perturbations et stabilisation de systèmes distribués, tome 1. Masson

    Google Scholar 

  10. G. MONTSENY (1990). Commande de systèmes à paramètres répartis: un exemple de problème mal posé. RAIRO APII, 24, p323–336.

    MATH  MathSciNet  Google Scholar 

  11. G. MONTSENY, P. BENCHIMOL (1992). Degree of controllability for point controlled vibrating string. LAAS Report N o 92361. Submitted to Automatica.

    Google Scholar 

  12. P.C. MULLER, H.I. WEBER (1972). Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems. Automatica, vol. 8, pp. 237–246.

    Article  MathSciNet  Google Scholar 

  13. M.R. SPIEGEL (1980). Laplace transforms. Mc Graw-Hill

    Google Scholar 

  14. R. TOMOVIC (1965). Controllability, Invariancy, and sensitivity. Proceedings third Allerton conference, pp. 17–26.

    Google Scholar 

  15. C.N. VISWANATHAN, R.W. LONGMAN (1979). A definition of the degree of controllability-A criterion for actuator placement. Proceedings of second VPI & SU/AIAA Symposium on dynamics and control of large flexible spacecraft, Blacksburg, VA, pp. 369–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Henry Jean-Pierre Yvon

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Montseny, G., Benchimol, P., Plantie, L. (1994). Characterization of controllability via a regular function: Example of the vibrating string. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035515

Download citation

  • DOI: https://doi.org/10.1007/BFb0035515

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19893-2

  • Online ISBN: 978-3-540-39337-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics