Abstract
We study, in the case of a point-controlled vibrating string, two real valued functions of a structural parameter which reflect, in some way, the degree of controllability of the system. These functions may be seen as realistic connections between non-robust binary notions of controllability and the continuous solutions of well-posed control problems. The classical controllability property may be characterized via a regularity argument : the system is controllable if and only if the considered functions are differentiable and non-controllability corresponds to cusp points with negative concavity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
A.A ANDRONOV, L.S. PONTRYAGIN (1956). Systèmes grossiers. Œuvres complètes d'Andronov. Editions de l'académie des sciences d'URSS.
F. CONRAD (1992). Stabilization of second order evolution equations by unbounded non linear feedback. Research report, INRIA, may 1992.
F. CONRAD (1993). Private correspondence.
R.F. CURTAINS, A.J. PRITCHARD (1978). Infinite dimensional linear systems theory. Lecture notes in control and information sciences. vol. 8. Springer-Verlag.
X. GUANGQIAN, P.M. BAINUM (1992). Actuator placement using degree of controllability for discrete-time systems. Transaction of ASME, vol. 114, pp. 508–516.
R.E. KALMAN, Y.C. HO, K.S. NARENDRA (1961). Controllability of linear dynamical systems. Contributions to Differential Equations, vol. 1, No. 2, pp. 182–213.
C.D. JOHNSON (1969). Optimization of a certain quality of complete controllability and observation for linear dynamical systems. ASME journal of basic engineering, vol.191, pp. 228–238.
S. JAFFARD. Sur le contrôle ponctuel des cordes vibrantes et des poutres. Preprint.
J.L. LIONS (1989). Contrôlabilité exacte. Perturbations et stabilisation de systèmes distribués, tome 1. Masson
G. MONTSENY (1990). Commande de systèmes à paramètres répartis: un exemple de problème mal posé. RAIRO APII, 24, p323–336.
G. MONTSENY, P. BENCHIMOL (1992). Degree of controllability for point controlled vibrating string. LAAS Report N o 92361. Submitted to Automatica.
P.C. MULLER, H.I. WEBER (1972). Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems. Automatica, vol. 8, pp. 237–246.
M.R. SPIEGEL (1980). Laplace transforms. Mc Graw-Hill
R. TOMOVIC (1965). Controllability, Invariancy, and sensitivity. Proceedings third Allerton conference, pp. 17–26.
C.N. VISWANATHAN, R.W. LONGMAN (1979). A definition of the degree of controllability-A criterion for actuator placement. Proceedings of second VPI & SU/AIAA Symposium on dynamics and control of large flexible spacecraft, Blacksburg, VA, pp. 369–381.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag
About this paper
Cite this paper
Montseny, G., Benchimol, P., Plantie, L. (1994). Characterization of controllability via a regular function: Example of the vibrating string. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035515
Download citation
DOI: https://doi.org/10.1007/BFb0035515
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19893-2
Online ISBN: 978-3-540-39337-5
eBook Packages: Springer Book Archive