Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
C. Bandle, G. Díaz et J.I. Díaz: Solutions d'equations de réaction-diffusion non-linéaires, explosant au bord parabolique. To appear in C.R.Acad.Sci. de Paris.
N. Carmichael and M.D. Quinn: Fixed point methods in nonlinear control. In Distributed Parameter System. F.Kappel et al. (eds.), Springer-Verlag (1985), 24–51.
J.I. Díaz: Sur la contrôllabilité approchée des inéquations variationelles et d'autre problémes paraboliques non-linéaires. C.R.Acad.Sci. de Paris, 312, serie I, (1991), 519–522.
J.I.Díaz: Sobre la controlabilidad aproximada de problemas no lineales disipativos. In Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos. Univ. Málaga (1991), 41–48.
J.I.Díaz: On the controllability of some simple climate models. In Environment, Economics and their Mathematical Models. J.I. Díaz and J.L. Lions (eds.). Masson (1993).
J.I.Díaz and A.V.Fursikov: A simple proof of the controllability from the interior for nonlinear evolution problems. Submitted.
J.I.Díaz and A.V.Fursikov: Approximate controllability of the Stokes system by external local one-dimensional forces. Manuscrit.
J.I.Díaz, J.Henry and A.M.Ramos: Article in preparation.
J.I.Díaz and J.Hernández: Qualitative properties of free boundaries for some nonlinear degenerate parabolic equations. In Nonlinear Parabolic Equations: Qualitative Properties of Solutions. L.Boccardo and A. Tesei (eds.). Pitman (1987), 85–93.
J.I.Díaz and A.M.Ramos: Positive and negative approximate controllability results for semilinear problems. In Actas del XIII CEDYA. Univ. Politécnica de Madrid (1994).
A. El Badia and B. Ain Seba: Contrôlabilité exacte de l'équation de Burger. C.R.Acad. Sci. de Paris, 314, serie I, (1992), 373–378.
C. Fabré, J.P. Puel and E. Zuazua: Contrôlabilité approchée de l'équation de la chaleur. C.R.Acad. Sci. de Paris, 315, serie I, (1992), 807–812.
C.Fabré, J.P. Puel and E.Zuazua: Approximate controllability of the semilinear heat equation. IMA Preprint Series, (1992).
C. Fabré, J.P. Puel and E. Zuazua: Contrôlabilité approchée de l'équation de la chaleur linéaire avec des contrôles de norme L∞ minimale. C.R.Acad. Sci. de Paris, 316, serie I, (1993), 679–684.
E.Fernández-Cara and J.Real: On a conjeture due to J.L.Lions. To appear in Nonlinear Analysis. TMA.
A.V. Fursikov and O.Y.Imanuvilov: On the approximate controllability of the Stokes systems. To appear in Annales de la Faculté des Sciences de Toulouse.
A.V.Fursikov and O.Y.Imanuvilov: On the approximate controllability of certain systems simulating a fluid flow. Preprint (1993).
Y. Ekeland and R. Temam: Analyse Convexe et Problémes Variationelles. Dunod, Gauthier-Villars, (1974).
J.Henry: Etude de la contrôlabilité de certains équations paraboliques. Thèse d'Etat, Université Paris VI (1978).
A.S. Kalsahnikov: Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations. Russ. Math. Survs. 42, (1987), 169–222.
S. Kamin, L.A. Peletier and J.L. Vázquez: Classification of singular solutions of a nonlinear heat equations. Duke Math. Jour., 58, (1989), 601–615.
J.L.Lions: Contrôle Optimal des Systems Gouvernés par des Equations aux Derivées Partielles. Dunod, (1968).
J.L.Lions: Remarques sur la contrôlabilité approchée. In Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos. Univ. de Málaga, (1991), 77–88.
J.L.Lions: Are there connections between turbulence and controllability?. In Analysis and Optimization des Systems. Lecture Notes in Control and Information Series 144, Springer-Verlag, (1990).
J.L.Lions: Exact controllability for distributed systems. Some trends and some problems. In Applied and Industrial Mathematics. R.Sigler (ed.), Kluwer (1991), 59–84.
J.L.Lions: Remarks on approximate controllability for parabolic systems. In Finite Elements in the 90's., E.Oñate et al. (eds.), Springer-Verlag, (1991), 612–620.
J.L.Lions: Unpublished manuscrit.
S. Mizohata: Unicité du prologment des solutions pour quelques opérateurs differentielles paraboliques. Mem.Coll. Sci.Univ.Kyoto, serie A31, (1958), 219–239.
K. Naito and T.I. Seidman: Invariance of the approximately reachable set under non-linear perturbations. SIAM J. Control and Optimization. 29, (1991), 731–750.
D.L. Russell: Controllability and stabilizability theory for nonlinear partial differential equations: recents progress and open questions. SIAM Rev. 20, (1978), 639–739.
J.C. Saut and B. Scheurer: Unique continuation for some evolution equations. J.Differenti Equations, 66, (1978), 118–139.
T.I. Seidman: Invariance of the reachable set under nonlinear perturbations. SIAM J.Control and Optimizations, 25, (1987), 1173–1191.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag
About this paper
Cite this paper
Díaz, J.I. (1994). Approximate controllability for some nonlinear parabolic problems. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035463
Download citation
DOI: https://doi.org/10.1007/BFb0035463
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19893-2
Online ISBN: 978-3-540-39337-5
eBook Packages: Springer Book Archive