[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Approximate controllability for some nonlinear parabolic problems

  • Invited Presentations
  • Conference paper
  • First Online:
System Modelling and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 197))

  • 1365 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bandle, G. Díaz et J.I. Díaz: Solutions d'equations de réaction-diffusion non-linéaires, explosant au bord parabolique. To appear in C.R.Acad.Sci. de Paris.

    Google Scholar 

  2. N. Carmichael and M.D. Quinn: Fixed point methods in nonlinear control. In Distributed Parameter System. F.Kappel et al. (eds.), Springer-Verlag (1985), 24–51.

    Google Scholar 

  3. J.I. Díaz: Sur la contrôllabilité approchée des inéquations variationelles et d'autre problémes paraboliques non-linéaires. C.R.Acad.Sci. de Paris, 312, serie I, (1991), 519–522.

    MATH  Google Scholar 

  4. J.I.Díaz: Sobre la controlabilidad aproximada de problemas no lineales disipativos. In Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos. Univ. Málaga (1991), 41–48.

    Google Scholar 

  5. J.I.Díaz: On the controllability of some simple climate models. In Environment, Economics and their Mathematical Models. J.I. Díaz and J.L. Lions (eds.). Masson (1993).

    Google Scholar 

  6. J.I.Díaz and A.V.Fursikov: A simple proof of the controllability from the interior for nonlinear evolution problems. Submitted.

    Google Scholar 

  7. J.I.Díaz and A.V.Fursikov: Approximate controllability of the Stokes system by external local one-dimensional forces. Manuscrit.

    Google Scholar 

  8. J.I.Díaz, J.Henry and A.M.Ramos: Article in preparation.

    Google Scholar 

  9. J.I.Díaz and J.Hernández: Qualitative properties of free boundaries for some nonlinear degenerate parabolic equations. In Nonlinear Parabolic Equations: Qualitative Properties of Solutions. L.Boccardo and A. Tesei (eds.). Pitman (1987), 85–93.

    Google Scholar 

  10. J.I.Díaz and A.M.Ramos: Positive and negative approximate controllability results for semilinear problems. In Actas del XIII CEDYA. Univ. Politécnica de Madrid (1994).

    Google Scholar 

  11. A. El Badia and B. Ain Seba: Contrôlabilité exacte de l'équation de Burger. C.R.Acad. Sci. de Paris, 314, serie I, (1992), 373–378.

    MATH  Google Scholar 

  12. C. Fabré, J.P. Puel and E. Zuazua: Contrôlabilité approchée de l'équation de la chaleur. C.R.Acad. Sci. de Paris, 315, serie I, (1992), 807–812.

    MATH  Google Scholar 

  13. C.Fabré, J.P. Puel and E.Zuazua: Approximate controllability of the semilinear heat equation. IMA Preprint Series, (1992).

    Google Scholar 

  14. C. Fabré, J.P. Puel and E. Zuazua: Contrôlabilité approchée de l'équation de la chaleur linéaire avec des contrôles de norme L minimale. C.R.Acad. Sci. de Paris, 316, serie I, (1993), 679–684.

    MATH  Google Scholar 

  15. E.Fernández-Cara and J.Real: On a conjeture due to J.L.Lions. To appear in Nonlinear Analysis. TMA.

    Google Scholar 

  16. A.V. Fursikov and O.Y.Imanuvilov: On the approximate controllability of the Stokes systems. To appear in Annales de la Faculté des Sciences de Toulouse.

    Google Scholar 

  17. A.V.Fursikov and O.Y.Imanuvilov: On the approximate controllability of certain systems simulating a fluid flow. Preprint (1993).

    Google Scholar 

  18. Y. Ekeland and R. Temam: Analyse Convexe et Problémes Variationelles. Dunod, Gauthier-Villars, (1974).

    Google Scholar 

  19. J.Henry: Etude de la contrôlabilité de certains équations paraboliques. Thèse d'Etat, Université Paris VI (1978).

    Google Scholar 

  20. A.S. Kalsahnikov: Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations. Russ. Math. Survs. 42, (1987), 169–222.

    Article  Google Scholar 

  21. S. Kamin, L.A. Peletier and J.L. Vázquez: Classification of singular solutions of a nonlinear heat equations. Duke Math. Jour., 58, (1989), 601–615.

    Article  MATH  Google Scholar 

  22. J.L.Lions: Contrôle Optimal des Systems Gouvernés par des Equations aux Derivées Partielles. Dunod, (1968).

    Google Scholar 

  23. J.L.Lions: Remarques sur la contrôlabilité approchée. In Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos. Univ. de Málaga, (1991), 77–88.

    Google Scholar 

  24. J.L.Lions: Are there connections between turbulence and controllability?. In Analysis and Optimization des Systems. Lecture Notes in Control and Information Series 144, Springer-Verlag, (1990).

    Google Scholar 

  25. J.L.Lions: Exact controllability for distributed systems. Some trends and some problems. In Applied and Industrial Mathematics. R.Sigler (ed.), Kluwer (1991), 59–84.

    Google Scholar 

  26. J.L.Lions: Remarks on approximate controllability for parabolic systems. In Finite Elements in the 90's., E.Oñate et al. (eds.), Springer-Verlag, (1991), 612–620.

    Google Scholar 

  27. J.L.Lions: Unpublished manuscrit.

    Google Scholar 

  28. S. Mizohata: Unicité du prologment des solutions pour quelques opérateurs differentielles paraboliques. Mem.Coll. Sci.Univ.Kyoto, serie A31, (1958), 219–239.

    MathSciNet  Google Scholar 

  29. K. Naito and T.I. Seidman: Invariance of the approximately reachable set under non-linear perturbations. SIAM J. Control and Optimization. 29, (1991), 731–750.

    Article  MATH  MathSciNet  Google Scholar 

  30. D.L. Russell: Controllability and stabilizability theory for nonlinear partial differential equations: recents progress and open questions. SIAM Rev. 20, (1978), 639–739.

    Article  MATH  MathSciNet  Google Scholar 

  31. J.C. Saut and B. Scheurer: Unique continuation for some evolution equations. J.Differenti Equations, 66, (1978), 118–139.

    Article  MathSciNet  Google Scholar 

  32. T.I. Seidman: Invariance of the reachable set under nonlinear perturbations. SIAM J.Control and Optimizations, 25, (1987), 1173–1191.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Henry Jean-Pierre Yvon

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Díaz, J.I. (1994). Approximate controllability for some nonlinear parabolic problems. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035463

Download citation

  • DOI: https://doi.org/10.1007/BFb0035463

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19893-2

  • Online ISBN: 978-3-540-39337-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics