[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Intercalated discs as a cause for discontinuous propagation in cardiac muscle: A theoretical simulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A theoretical model of a cardiac muscle fiber (strand) based on core conductor principles and which includes a periodic intercalated disc structure has been developed. The model allows for examination of the mechanism of electrical propagation in cardiac muscle on a microscopic cell-to-cell level. The results of the model simulations demonstrate the discontinuous nature of electrical propagation in cardiac muscle and the inability of classical continuous cable theory to adequately describe propagation phenomena in cardiac muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, L., M.M. Dewey, and W. Berger. Propagation of action potentials and the structure of the nexus in cardiac muscle.J. Gen. Physiol. 48:797–823, 1965.

    Article  CAS  PubMed  Google Scholar 

  2. Beeler, G.W. and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibres.J. Physiol. London 286:177–210, 1977.

    Google Scholar 

  3. Chapman, R.A. and C.H. Fry. An analysis of the cable properties of frog ventricular myocardium.J. Physiol. London 283:263–281, 1978.

    CAS  PubMed  Google Scholar 

  4. Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart.J. Physiol. London 255:335–346, 1976.

    CAS  PubMed  Google Scholar 

  5. Crank, J. and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type.Proc. Cambridge Philos. Soc. 43:50–77, 1947.

    Google Scholar 

  6. Draper, M.H. and M. Mya-Tu. A comparison of the conduction velocity of cardiac tissue of various animals.Q. J. Exp. Physiol. 44:91–109, 1959.

    CAS  Google Scholar 

  7. Freygang, W.H. and W. Trautwein. The structural implications of the linear electrical properties of cardiac Purkinje strands.J. Gen. Physiol. 55:524–547, 1970.

    Article  CAS  PubMed  Google Scholar 

  8. Heppner, D.B. and R. Plonsey. Simulation of electrical interaction of cardiac cells.Biophys. J. 10 1057–1075, 1970.

    CAS  PubMed  Google Scholar 

  9. Hodgkin, A.L. and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. London 117:500–544, 1952.

    CAS  PubMed  Google Scholar 

  10. Hodgkin, A.L. and W.A.H. Rushton. The electrical constants of a crustacean nerve fiber.Proc. R. Soc. London, Ser. B 133:444–508, 1946.

    Google Scholar 

  11. Lieberman, M., T. Sawanobori, J.M. Kootsey, and E.A. Johnson. A synthetic strand of cardiac muscle: Its passive electrical properties.J. Gen. Physiol. 65:527–550, 1975.

    Article  CAS  PubMed  Google Scholar 

  12. Lowenstein, W.R. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913, 1981.

    Google Scholar 

  13. McAllister, R.E., D. Noble, and R.W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibers.J. Physiol. London 251:1–59, 1975.

    CAS  PubMed  Google Scholar 

  14. McNutt, N.S. and R.S. Weinstein. Membrane ultrastructure at mammalian intercellular junctions.Prog. Biophys. Mol. Biol. 26:45–101, 1973.

    CAS  PubMed  Google Scholar 

  15. Page, E. and L.P. McAllister. Studies on the intercalated discs of rat ventricular myocardial cells.J. Ultra. Res. 43:388–411, 1973.

    CAS  Google Scholar 

  16. Page, E. and Y. Shibata. Permeable junctions between cardiac cells.Ann. Rev. Physiol. 43:431–442, 1981.

    CAS  Google Scholar 

  17. Pollack, G.H. Intercellular coupling in the atrioventricular node and other tissues of the rabbit heart.J. Physiol. London 255:275–298, 1976.

    CAS  PubMed  Google Scholar 

  18. Revel, J.P. and M.J. Karnovsky. Hexagonal arrays of subunits in intercellular junctions of the mouse heart and liver.J. Cell Biol. 12:571–588, 1962.

    Article  CAS  PubMed  Google Scholar 

  19. Sjostrand, F.S. and E. Anderson-Cedergren. Intercalated discs of heart muscle. InThe Structure and Function of Muscle, Vol. 1, edited by G. Bourne. New York: Academic Press, 1960, pp. 421–445.

    Google Scholar 

  20. Spach, M.S., W.T. Miller III, D.B. Geselowitz, R.C. Barr, J.R. Sommer, and E.A. Johnson. The discontinous nature of propagation in cardiac muscle: Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents.Circ. Res. 48:39–56, 1981.

    CAS  PubMed  Google Scholar 

  21. Spira, A.W. The nexus in the intercalated disc of the canine heart: Quantitative data for the estimation of its resistance.J. Ultra. Res. 34:409–425, 1971.

    CAS  Google Scholar 

  22. Weidmann, S.. The electrical constants of Purkinje fibers.J. Physiol. London 118:348–360, 1952.

    CAS  PubMed  Google Scholar 

  23. Weidmann, S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle.J. Physiol. London 187:323–342, 1966.

    CAS  PubMed  Google Scholar 

  24. Woodbury, J.W. and W.E. Crill. On the problem of impulse conduction in the atrium. InNervous Inhibition, edited by L. Florey. New York: Plenum Press, 1961, pp. 24–35.

    Google Scholar 

  25. Woodbury, J.W. and W.E. Crill. The potential in the gap between two abutting cardiac cells.Biophys. J. 10:1076–1085, 1970.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, P.J., Rudy, Y. & Plonsey, R. Intercalated discs as a cause for discontinuous propagation in cardiac muscle: A theoretical simulation. Ann Biomed Eng 11, 177–189 (1983). https://doi.org/10.1007/BF02363285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363285

Keywords

Navigation