Abstract
In this work, we introduce the \({\mathbb {F}}_qR\)-linear skew cyclic codes, wh ere \(q=p^s\) is a prime power and \(R={\mathbb {F}}_q+u{\mathbb {F}}_q\) with \(u^2=0\). We provide the algebraic structure of these codes. The dual codes of separable linear skew cyclic codes are also presented. Finally, by using the Gray map from \({\mathbb {F}}_qR\) to \({\mathbb {F}}_q\), we get some optimal linear codes over \({\mathbb {F}}_q\).
Similar content being viewed by others
References
Abualrub, T., Ghrayeb, A., Aydin, N., Siap, I.: On the construction of skew quasi-cyclic codes. IEEE Trans. Inf. Theory 56(5), 2081–2090 (2010)
Abualrub, T., Aydin, N., Seneviratne, P.: On \(\theta \)-cyclic codes over \({\mathbb{F}}_{2}+v{\mathbb{F}}_2\). Australas. J. Combin. 54, 115–126 (2012)
Abualrub, T., Siap, I., Aydin, N.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-additive cyclic codes. IEEE Trans. Inf. Theory 60(3), 1508–1514 (2014)
Aydogdu, I., Siap, I.: The structure of \({\mathbb{Z}}_{2}{\mathbb{Z}}_{2^s}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013)
Aydogdu, I., Abualrub, T.: The structure of \({\mathbb{Z}}_2{\mathbb{Z}}_2[u]\)-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 63(8), 4883–4893 (2017)
Aydogdu, I., Abualrub, T., Siap, I.: On \({\mathbb{Z}}_2{\mathbb{Z}}_2[u]\)-additive codes. Int. J. Comput. Math. 92, 1806–1814 (2015)
Aksoy, R., Çalişkan, F.: Self-dual codes over \({\mathbb{F}}_2\times ({\mathbb{F}}_2+v{\mathbb{F}}_2)\). Crypto. Commun. 13(1), 129–141 (2021)
Bhaintwal, M.: Skew quasi-cyclic codes over Galois rings. Des. Codes Cryptogr. 62(1), 85–101 (2012)
Bag, T., Ashraf, M., Mohammad, G., Upadhyay, A.: Quantum codes from \((1--2u_{1}-2u_{2}-\cdot -2u_{m})\)-skew constacyclic codes over the ring \({\mathbb{F}}_q+u_1{\mathbb{F}}_q+\cdot +u_{2m}{\mathbb{F}}_q\). Quantum Inf. Process. 18(9), 270 (2019)
Bag, T., Dinh, H., Upadhyay, A., Bandi, R., Yamaka, W.: Quantum codes from skew constacyclic codes over the ring \({\mathbb{F}}_q[u, v]/\langle u^2-1, v^2-1, uv-vu\rangle \). Discrete Math. 343(3), 111737 (2020)
Boucher, D., Geiselmann, W., Ulmmer, F.: Skew cyclic codes. Appl. Algebra Eng. Commun. Comput. 18(4), 379–389 (2007)
Boucher, D., Solé, D., Ulmmer, F.: Skew constacyclic codes over Galois rings. Adv. Math. Commun. 2, 273–292 (2008)
Borges, J., Fernández-Córdoba, C., Pujol, J., Rif̀a, J., Villanueva, M.: \({\mathbb{Z}}_{2}{\mathbb{Z}}_{4}\)-linear codes: generator matrices and duality. Designs Codes Cryptogr. 54 (2), 167-179 (2010)
Borges, J., Fernández-Córdoba, C., Ten-Valls, R.: On \({\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}\)-additive cyclic codes. Adv. Math. Commun. 12(1), 169–179 (2018)
Çalişkan, F., Aksoy, R.: Linear codes over \({\mathbb{F}}_2\times ({\mathbb{F}}_2+v{\mathbb{F}}_2)\) and the MacWilliams identities. Appl. Algebra Eng. Commun. Comput. 31(2), 135–147 (2019)
Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Research Reports, 10. Ann Arbor, MI, USA: Historical Jrl. (1973)
Diao, L., Gao, J.: \({\mathbb{Z}}_{p}{\mathbb{Z}}_{p}[u]\)-additive cyclic codes. Int. J. Inf. Coding Theory 5(1), 1–17 (2018)
Diao, L., Gao, J., Lu, J.: On \({\mathbb{Z}}_{p}{\mathbb{Z}}_{p}[v]\)-additive cyclic codes. Adv. Math. Commun. 14(4), 555–572 (2020)
Dinh, H.Q., Pathak, S., Bag, T., Upadhyay, K., Chinnakum, W.: A study of \({\mathbb{F}}_{q}R\)-cyclic codes and their applications in constructing quantum codes. IEEE Access https://doi.org/10.1109/ACCESS.2020.3.32078 (2020)
Gao, J., Shen, L., Fu, F.-W.: A Chinese remainder theorem approach to skew generalized quasi-cyclic codes. Crypto. Commun. 8(1), 51–56 (2016)
Gao, J., Ma, F., Fu, F.-W.: Skew constacyclic codes over \({\mathbb{F}}_q+v{\mathbb{F}}_q\). Appl. Comput. Math. 6(3), 286–295 (2017)
Gao, J.: Skew cyclic codes over \({\mathbb{F}}_p+v{\mathbb{F}}_p\). J. Appl. Math. Inform. 31(3–4), 337–342 (2013)
Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Available online at http://www.codetables.de/(1995)
Gursoy, F., Siap, I., Yildiz, B.: Construction of skew cyclic codes over \({\mathbb{F}}_{q}+v{\mathbb{F}}_{q}\). Adv. Math. Commun. 8(3), 313–322 (2014)
Hou, X., Gao, J.: \({\mathbb{Z}}_{p}{\mathbb{Z}}_{p}[v]\)-additive cyclic codes are asymptotically good. J. Appl. Math. Comput. https://doi.org/10.1007/s12190-020-01466-w (2020)
Jitman, S., Ling, S., Udomkavanich, P.: Skew constacyclic codes over finite chain rings. Adv. Math. Commun. 6(1), 39–63 (2012)
Kumar, R., Bhaintwal, M.: A class of constacyclic codes and skew constacyclic codes over \({\mathbb{Z}}_{2^s}+u{\mathbb{Z}}_{2^s}\) and their Gray images. J. Appl. Math. Comput. https://doi.org/10.1007/s12190-020-01425-5 (2020)
Li, J., Gao, J., Fu, F.-W., Ma, F.: \({\mathbb{F}}_{q}R\)-linear skew constacyclic codes and their application of constructing quantum codes. Quantum Inf. Process. 19(7), 193 (2020)
Li, J., Gao, J., Fu, F.-W.: Bounds on covering radius of \({\mathbb{F}}_{2}R\)-linear codes. IEEE Commun. Lett. 25(1), 23–27 (2021)
Melakhessou, A., Aydin, N., Hebbache, Z., Guenda, K.: \({\mathbb{Z}}_{q}({\mathbb{Z}}_{q}+u{\mathbb{Z}}_{q})\)-linear skew constacyclic codes. J. Algebra Comb. Discrete Appl. 7(1), 85–101 (2019)
Ma, F., Gao, J., Li, J., Fu F.-W.: \(\sigma ,\delta \)-Skew quasi-cyclic codes over the ring \({\mathbb{Z}}_{4}+u{\mathbb{Z}}_{4}\). Crypto. Commun. https://doi.org/10.1007/s12095-020-00467-7 (2021)
Ozen, M., Ozzaim, N.T., Ince, H.: Skew quasi-cyclic codes over \({\mathbb{F}}_{q}+v{\mathbb{F}}_{q}\). J. Algebra Appl. 6(4), 1950077 (2019)
Qian, L., Cao, X.: Bounds and optimal \(q\)-ary codes derived from the \({\mathbb{Z}}_{q}R\)-cyclic codes. IEEE Trans. Inf. Theory 66(2), 923–935 (2019)
Siap, I., Abualrub, I., Aydin, N., Seneviratne, P.: Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2(1), 10–20 (2011)
Sharma, A., Bhaintwal, M.: A class of skew-constacyclic codes over \({\mathbb{Z}}_4+u{\mathbb{Z}}_4\) and their \({\mathbb{Z}}_4\)-images. Int. J. Inf. Coding Theory 4(4), 289–303 (2017)
Shi, M., Wu, R., Krotov, D.S.: On \({\mathbb{Z}}_{p}{\mathbb{Z}}_{p^k}\)-additive codes and their duality. IEEE Trans. Inf. Theory 65(6), 3841–3847 (2019)
Wu, R., Shi, M.: Some classes of mixed alphabet codes with few weights. IEEE Commun. Lett. (2020). https://doi.org/10.1109/LCOMM.2020.3038876
Yao, T., Zhu, S.: \({\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}\)-additive cyclic codes are asymptotically good. Cryptogr. Commun. 12(2), 253–264 (2020)
Acknowledgements
This research is supported by the 973 Program of China (Grant No. 2013CB834204), the National Natural Science Foundation of China (Grant No. 61571243, 12071264, 11701336, 11626144 and 11671235), the Fundamental Research Funds for the Central Universities of China.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, J., Gao, J. & Fu, FW. \({\mathbb {F}}_qR\)-Linear skew cyclic codes. J. Appl. Math. Comput. 68, 1719–1741 (2022). https://doi.org/10.1007/s12190-021-01588-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-021-01588-9