[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

High-Order Methods for Systems of Fractional Ordinary Differential Equations and Their Application to Time-Fractional Diffusion Equations

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Taking into account the regularity properties of the solutions of fractional differential equations, we develop a numerical method which is able to deal, with the same accuracy, with both smooth and nonsmooth solutions of systems of fractional ordinary differential equations of the Caputo-type. We provide the error analysis of the numerical method and we illustrate its feasibility and accuracy through some numerical examples. Finally, we solve the time-fractional diffusion equation using a combination of the method of lines and the newly developed hybrid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C.M., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction–subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, New York (2010)

    Book  MATH  Google Scholar 

  7. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electr. Trans. Numer. Anal. 5, 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186, 482–503 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diethelm, K., Ford, N.J.: Volterra integral equations and fractional calculus: do neighboring solutions intersect? J. Integral Equ. Appl. 1, 25–37 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Ford, N.J., Connolly, J.A.: Comparison of numerical methods for fractional differential equations. Commun. Pure Appl. Anal. 5, 289 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ford, N., Morgado, M.: Fractional boundary value problems: analysis and numerical methods. Fract. Calc. Appl. Anal. 14, 554–567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ford, N.J., Morgado, M.L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, 874–891 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ford, N.J., Yan, Y.: An approach to construct higher order time discretization schemes for time fractional partial differential equations with nonsmooth data. Fract. Calc. Appl. Anal. 20, 1076–1105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferrás, L.L., Ford, N.J., Morgado, M.L., Rebelo, M.: A numerical method for the solution of the time-fractional diffusion equation. In: Murgante, B. et al. (eds.) Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol. 8579. Springer, Cham (2014)

  15. Gao, G., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, Y.T., Zhuang, P.: Anomalous sub-diffusion equations by the meshless collocation method. Aust. J. Mech. Eng. 10, 1–8 (2012)

    Article  Google Scholar 

  18. Fenghui, H.: A time-space collocation spectral approximation for a class of time fractional differential equations. Int. J. Differ. Equ. 2012, 1–19 (2012). Article ID 495202

    Article  MathSciNet  MATH  Google Scholar 

  19. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205(2), 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Y., Chuanju, X.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luchko, Y.: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59, 1766–1772 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luchko, Y.: Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14, 110–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 5, 1138–1145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mainardi, F.: Fractional diffusive waves in viscoelastic solids. In: Wegner, J. I., Norwood, F. R. (eds.) Nonlinear Waves in Solids, ASME Book No. AMR 137 93-97, Fairfield (1995)

  27. Mainardi, F.: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)

    MATH  Google Scholar 

  28. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Mainardi, F.: The time fractional diffusion-wave equation. Radiophys. Quant. Electron. 38, 13–24 (1995)

    Article  MathSciNet  Google Scholar 

  30. Nigmatullin, R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi 133, 425–430 (1986)

    Article  Google Scholar 

  31. Rice, J.: On the degree of convergence of nonlinear spline approximation. In: Schoenberg, I.J. (ed.) Approximations with Special Emphasis on Spline Functions, pp. 349–369. Academic Press, New York (1969)

    Google Scholar 

  32. Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character JSTOR 110, 709–737 (1926)

    Google Scholar 

  33. Schneider, W., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stynes, M., O’Riordan, E., Gracia, L.J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, H.G., Chen, W., Sze, K.Y.: A semi-discrete finite element method for a class of time-fractional diffusion equations. Philos. Trans. R. Soc. A 371, 20120268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27, 27–82 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. YingJun, J., JingTangm, M.A.: Moving finite element methods for time fractional partial differential equations. Sci. China Math. 56, 1287–1300 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

L.L. Ferrás would like to thank FCT - Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) for financial support through the scholarship SFRH/BPD/100353/2014 and Project UID-MAT-00013/2013. M.L. Morgado aknowledges the financial support of FCT, through the Project UID/Multi/04621/2019 of CEMAT/IST-ID, Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon. This work was also partially supported by FCT through the Project UID/MAT/00297/2019 (Centro de Matemática e Aplicações).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luísa Morgado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrás, L.L., Ford, N., Morgado, M.L. et al. High-Order Methods for Systems of Fractional Ordinary Differential Equations and Their Application to Time-Fractional Diffusion Equations. Math.Comput.Sci. 15, 535–551 (2021). https://doi.org/10.1007/s11786-019-00448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-019-00448-x

Keywords

Mathematics Subject Classification

Navigation