[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Speckle reduction of ultrasound medical images using Bhattacharyya distance in modified non-local mean filter

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Speckle, a multiplicative noise, is an inherent property of ultrasound imaging. It reduces the contrast and resolution of the ultrasound images. Thus, it creates a negative effect on image interpretation and diagnostic tasks. In this paper, a modified non-local means filter using Bhattacharyya distance is proposed. In the non-local mean, noise free pixel is estimated as a weighted mean of image pixels, where weights are calculated according to the similarity between image patches. Similarity between the patches is measured by comparing pixel intensities. In this work, instead of comparing pixel intensities for measuring similarities, blocks are used for measuring similarities based on Bhattacharyya distance. Quantitative results on both simulated and real ultrasound images show the effectiveness of the proposed method compared to other well-known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Loizou, C.P., Pattichis, C.S., Christodoulou, C.I., Istepanian, R.S.H., Pantziaris, M., Nicolaides, A.: Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1653–1669 (2005)

    Article  Google Scholar 

  2. de Araujo, A.F., Constantinou, C.E., Tavares, J.M.R.: New artificial life model for image enhancement. Exp. Syst. Appl. 41(13), 5892–5906 (2014)

    Article  Google Scholar 

  3. Finn, S., Glavin, M., Jones, E.: Echocardiographic speckle reduction comparison. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(1), 82 (2011)

    Article  Google Scholar 

  4. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  5. Zhang, F., Yoo, Y.M., Koh, L.M., Kim, Y.: Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction. IEEE Trans. Med. Imaging 26(2), 200–211 (2007)

    Article  Google Scholar 

  6. Aysal, T.C., Barner, K.E.: Rayleigh-maximum-likelihood filtering for speckle reduction of ultrasound images. IEEE Trans. Med. Imaging 26(5), 712–727 (2007)

    Article  Google Scholar 

  7. Deng, Y., Wang, Y., Shen, Y.: Speckle reduction of ultrasound images based on Rayleigh-trimmed anisotropic diffusion filter. Pattern Recognit. Lett. 32(13), 1516–1525 (2011)

    Article  Google Scholar 

  8. Gupta, S., Chauhan, R.C., Sexana, S.C.: Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Med. Biol. Eng. Comput. 42(2), 189–192 (2004)

    Article  Google Scholar 

  9. Achim, A., Bezerianos, A., Tsakalides, P.: Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001)

    Article  Google Scholar 

  10. Forouzanfar, M., Moghaddam, H.A., Gity, M.: A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images. Signal Image Video Process. 4(3), 359–375 (2010)

    Article  MATH  Google Scholar 

  11. Andria, G., Attivissimo, F., Lanzolla, A.M.L., Savino, M.: A suitable threshold for speckle reduction in ultrasound images. IEEE Trans. Instrum. Meas. 62(8), 2270–2279 (2013)

    Article  Google Scholar 

  12. Jidesh, P., Banothu, B.: Image despeckling with non-local total bounded variation regularization. Comput. Electr. Eng. (2017). https://doi.org/10.1016/j.compeleceng.2017.09.013

    Google Scholar 

  13. Elyasi, I., Pourmina, M.A., Moin, M.-S.: Speckle reduction in breast cancer ultrasound images by using homogeneity modified Bayes shrink. Measurement 91, 55–65 (2016)

    Article  Google Scholar 

  14. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: Computer Vision and Pattern Recognition, CVPR 2005. IEEE Computer Society Conference, vol. 2, pp. 60–65 (2005)

  15. Coup, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18(10), 2221–2229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yi, Z., Ding, M., Wu, L., Zhang, X.: Nonlocal means method using weight refining for despeckling of ultrasound images. Signal Process. 103, 201–213 (2014)

    Article  Google Scholar 

  17. Sudeep, P.V., Palanisamy, P., Rajan, J., Baradaran, H., Saba, L., Gupta, A., Suri, J.S.: Speckle reduction in medical ultrasound images using an unbiased non-local means method. Biomed. Signal Process. Control 28, 1–8 (2016)

    Article  Google Scholar 

  18. Guo, Y., Wang, Y., Hou, T.: Speckle filtering of ultrasonic images using a modified non local-based algorithm. Biomed. Signal Process. Control 6(2), 129–138 (2011)

    Article  Google Scholar 

  19. Yang, J., Fan, J., Ai, D., Wang, X., Zheng, Y., Tang, S., Wang, Y.: Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. Neurocomputing 195, 88–95 (2016)

    Article  Google Scholar 

  20. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50(2), 606–616 (2012)

    Article  Google Scholar 

  21. Duan, J., Pan, Z., Zhang, B., Liu, W., Tai, X.-C.: Fast algorithm for color texture image inpainting using the non-local CTV model. J. Glob. Optim. 62(4), 853–876 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high order variational models made easy for image processing. Math. Methods Appl. Sci. 39(14), 4208–4233 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duan, J., Qiu, Z., Lu, W., Wang, G., Pan, Z., Bai, L.: An edge-weighted second order variational model for image decomposition. Digit. Signal Process. 49, 162–181 (2016)

    Article  Google Scholar 

  24. Duan, J., Tench, C., Gottlob, I., Proudlock, F., Bai, L.: New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images. Phys. Med. Biol. 60(22), 8901 (2015)

    Article  Google Scholar 

  25. Duan, J., Lu, W., Tench, C., Gottlob, I., Proudlock, F., Samani, N.N., Bai, L.: Denoising optical coherence tomography using second order total generalized variation decomposition. Biomed. Signal Process. Control 24, 120–127 (2016)

    Article  Google Scholar 

  26. Singh, K., Ranade, S.K., Singh, C.: A hybrid algorithm for speckle noise reduction of ultrasound images. Comput. Methods Programs Biomed. 148, 55–69 (2017)

    Article  Google Scholar 

  27. Tofighi, M., Kose, K., Cetin, A.E.: Denoising images corrupted by impulsive noise using projections onto the epigraph set of the total variation function (PES-TV). Signal Image Video Process. 9(1), 41–48 (2015)

    Article  Google Scholar 

  28. de Araujo, A.F., Constantinou, C.E., Tavares, J., Manuel, R.S.: Smoothing of ultrasound images using a new selective average filter. Exp. Syst. Appl. 60, 96–106 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarungbam Bonny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonny, S., Chanu, Y.J. & Singh, K.M. Speckle reduction of ultrasound medical images using Bhattacharyya distance in modified non-local mean filter. SIViP 13, 299–305 (2019). https://doi.org/10.1007/s11760-018-1357-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1357-y

Keywords

Navigation