[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An improved algorithm for integrated production and distribution scheduling problem with committed delivery dates

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study a machine scheduling problem with job transportation coordination. The orders including different amount of the same product will be delivered to their customers after being completed on a single machine and each order has a delivery due date which is promised by the manufacturer to its customer. A third-party logistics provider picks up the finished orders at the end of each day and charges each order a delivery cost, which is linearly decreasing with the delivery time and linearly increasing with its quantity. The goal is to find a schedule minimizing total delivery cost under the constraint that all the orders are delivered to the customers before the due dates. The problem is strongly NP-hard. We propose an improved approximate algorithm with worst-case ratio of \(5/3\), which improves the existing one with worst-case ratio of \(2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z.-L.: Integrated production and outbound distribution scheduling: review and extensions. Oper. Res. 58, 130–148 (2010)

    Article  MATH  Google Scholar 

  2. Gong, H., Tang, L.: Two-machine flowshop scheduling with intermediate transportation under job physical space consideration. Comput. Oper. Res. 38, 1267–1274 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lee, C.Y., Chen, Z.-L.: Machine scheduling with transportation considerations. J. Sched. 4, 3–24 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lee, C.Y., Strusevich, V.A.: Two-machine shop scheduling with an uncapacited interstage transporter. IIE Trans. 37, 725–736 (2005)

    Article  Google Scholar 

  5. Stecke, K.E., Zhao, X.: Production and transportation integration for a make-to-order manufacturing company with a commit-to-delivery business mode. Manuf. Serv. Oper. Manag. 9, 206–224 (2007)

    Google Scholar 

  6. Zhong, W., Chen, Z.-L., Chen, M.: Integrated production and distribution scheduling with committed delivery dates. Oper. Res. Lett. 38, 133–138 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research is supported by the National Natural Science Foundation of China grants (No. 11301327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiya Zhong.

Appendices

Appendix A: Proof of Theorem 3.2

Lemma 5.1

If the heuristic runs step 2 and the obtained schedule is \(\sigma _1\), then \(\frac{f(\sigma _1)}{f^*}{\le }\frac{5}{3}\).

Proof

In schedule \(\sigma _1\), it is clear to see that

$$\begin{aligned} f(\sigma _1)-f(\sigma _0)=aP_{1l}^{\sigma _1}~~~~and~~~~f^*\ge f(\sigma _0). \end{aligned}$$
(2)

(1) If \(P_{1l}^{\sigma _{1}}=0\), then

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}=1+\frac{aP_{1l}^{\sigma _1}}{f(\sigma _0)}=1. \end{aligned}$$

(2) If \(d_{max}\ge d_{\sigma _{1}[1]}+1\) and \(P_{1l}^{\sigma _{1}}\le \frac{2}{3}\sum _{i\in N}Q_i\), we have

$$\begin{aligned} b-a(d_{\sigma _{1}[1]}-1)>a~~~(by~~b-a(d_{max}-1)>0). \end{aligned}$$

This implies that

$$\begin{aligned} f(\sigma _0)&> ac+ \left( \sum _{i\in N}Q_i-c \right) [b-a(d_{max}-2)]\\&> ac+ \left( \sum _{i\in N}Q_i-c \right) a\\&= a\sum _{i\in N}Q_i. \end{aligned}$$

By \(P_{1l}^{\sigma _{1}}\le \frac{2}{3}\sum _{i\in N}Q_i\), we have

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}=1+\frac{aP_{1l}^{\sigma _1}}{f(\sigma _0)}\le 1+\frac{\frac{2a}{3}\sum _{i\in N}Q_i}{a\sum _{i\in N}Q_i}=\frac{5}{3}. \end{aligned}$$

(3) If \(d_{max}=d_{\sigma _{1}[1]}\) and \(P_{1l}^{\sigma _{1}}\le \frac{2}{3} \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) \), by \(b-a(d_{max}-1)>0\), the unit shipping cost for products delivered at the end of day \(2\) is at least \(a\). Thus, \(f(\sigma _0)>a \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) \) and

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}&\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}\\&= 1+\frac{aP_{1l}^{\sigma _1}}{f(\sigma _0)}\\&< 1+\frac{\frac{2}{3}a \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) }{a \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) }\\&= \frac{5}{3}. \end{aligned}$$

We can conclude that, if the output schedule is \(\sigma _1\), then \(\frac{f(\sigma _1)}{f^*}\le \frac{5}{3}\). \(\square \)

Lemma 5.2

If the heuristic runs step 2 and the output schedule is \(\sigma _2^{P2}\), then \(\frac{f(\sigma _2^{P2})}{f^*}\le \frac{5}{3}\).

Proof

By \(P_{1l}^{\sigma _{1}}>\frac{2}{3}\sum _{i\in N}Q_i\), we know that \(\sigma _{1}[1]\) is the largest order in \(N\). Thus, the structure of \(\sigma _1\)(and \(\sigma _0\)) is (\(N_1, N_2, \sigma _{1}[1], N_4\)), and the structure of \(\sigma _2^{P2}\) is (\(N_1, \sigma _{1}[1], N_4, N_2\)). Therefore,

$$\begin{aligned} f(\sigma _2^{P2})-f^*\le a\sum _{i\in N_2}Q_i+a\sum _{i\in N_4}Q_i<\frac{a}{3}\sum _{i\in N}Q_i. \end{aligned}$$

As discussed in the proof of Lemma 5.1, \(f(\sigma _0)>a\sum _{i\in N}Q_i\) and

$$\begin{aligned} \frac{f(\sigma _2^{P2})}{f^*}\le 1+\frac{f(\sigma _2^{P2})-f^*}{f(\sigma _0)}<1+\frac{\frac{a}{3}\sum _{i\in N}Q_i}{f(\sigma _0)}<1+\frac{\frac{a}{3}\sum _{i\in N}Q_i}{a\sum _{i\in N}Q_i}<\frac{5}{3}. \end{aligned}$$

\(\square \)

Lemma 5.3

If the heuristic runs step 2 and the output schedule is \(\sigma _3^{P2}\), then \(\frac{f(\sigma _3^{P2})}{f^*}\le \frac{5}{3}\).

Proof

In this case, the following three conditions hold:

  1. (1)

    \(d_{max}=d_{\sigma _{1}[1]}\);

  2. (2)

    \(P_{1l}^{\sigma _{1}}>\frac{2}{3} \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) \);

  3. (3)

    \(P_{1r}^{\sigma _{1}}>\sum _{i\in N_2}Q_i\).

Note that in schedule \(\sigma _1\), \(\Delta \) is the set of orders processed between \(N_2\) and \(\sigma _1[1]\) and \(Q_{max}\) = max\(\{Q_j|j\in \Delta \}\), then the structure of \(\sigma _1\)(and \(\sigma _0\)) is (\(N_1, N_2, \Delta , \sigma _{1}[1], N_4\)) and the structure of \(\sigma _3^{P2}\) is (\(N_1, \Delta , N_4, N_2, \sigma _{1}[1]\)).

We first consider case (1): \(\sum _{i\in N_4}Q_i\le P_{1l}^{\sigma _{1}}\). We prove that, in this case, \(\sigma _{3}^{P2}\) is an optimal schedule. By \(\sum _{i\in N_4}Q_i\le P_{1l}^{\sigma _{1}}\), we can see that order \(\sigma _{1}[1]\) is the only order that is finished production on the second day in schedule \(\sigma _3^{P2}\). Thus, along with the fact that \(d_j=d_{\sigma _1[1]}\) and \(Q_j\ge Q_{\sigma _1[1]}\) for \(j\in \Delta \) (By EDD-LPT), we can conclude that any feasible schedule where an order from \(\Delta \) is finished on day \(2\) will have a total delivery cost greater than or equal to \(f(\sigma _3^{P2})\). Now consider any feasible schedule \(\pi \) where all the orders in \(\Delta \) are finished on day \(1\). The orders in \(N_1\) must be finished on day \(1\) in \(\pi \). Due to the fact that \(P_{1r}^{\sigma _{1}}>\sum _{i\in N_2}Q_i\), even if all the other orders, i.e. orders in \(N_2\bigcup N_4\), are finished production on day 2, order \(\sigma _1[1]\) will still be finished on day \(2\). Thus, the total cost of \(\pi \) is at least \(f(\sigma _3^{P2})\). Based on the above analysis, we can see that \(\sigma _3^{P2}\) is an optimal schedule.

Next we consider case (2): \(\sum _{i\in N_4}Q_i>P_{1l}^{\sigma _{1}}\) and \(S_4\ne \emptyset \). By the definitions of \(S_4\) and \(N_4^*\), we can see that the structure of \(\sigma _3^{P2}\) is (\(N_1, \Delta , S_4, \sigma _3^{P2}[1], N_4^*, N_2, \sigma _1[1]\)) and \(f(\sigma _3^{P2})-f(\sigma _1)\le a\sum _{i\in N_2}Q_i-a\sum _{i\in S_4}Q_i\). Note that \(S_4\ne \emptyset \) and \(Q_j\ge Q_{\sigma _3^{P2}[1]}\) for \(j\in S_4\) (By EDD-LPT), then \(Q_{\sigma _3^{P2}[1]}<\frac{1}{2}\sum _{i\in N_4}Q_i\) and \(\sum _{i\in S_4}Q_i>\frac{1}{2}P_{1l}^{\sigma _1}\). Thus,

$$\begin{aligned} f(\sigma _3^{P2})-f(\sigma _0)&= f(\sigma _3^{P2})-f(\sigma _1)+f(\sigma _1)-f(\sigma _0)\\&\le a\sum _{i\in N_2}Q_i-a\sum _{i\in S_4}Q_i+aP_{1l}^{\sigma _1}\\&< a\sum _{i\in N_2}Q_i+\frac{a}{2}P_{1l}^{\sigma _1}. \end{aligned}$$

By condition \(\sum _{i\in N_4}Q_i>P_{1l}^{\sigma _{1}}\), we have

$$\begin{aligned} \Delta x-P_{1l}^{\sigma _{1}}>\Delta x-\sum _{i\in N_4}Q_i=P_{1r}^{\sigma _1}>\sum _{i\in N_2}Q_i \end{aligned}$$

and \(\Delta x>P_{1l}^{\sigma _{1}}+\sum _{i\in N_2}Q_i\). By condition (1), it is clear to see that

$$\begin{aligned} f(\sigma _0)>a \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) \end{aligned}$$

and

$$\begin{aligned} \frac{f(\sigma _3^{P2})}{f^*}&\le 1+\frac{f(\sigma _3^{(P2)})-f(\sigma _0)}{f(\sigma _0)}\\&< 1+\frac{a\sum _{i\in N_2}Q_i+\frac{a}{2}P_{1l}^{\sigma _1}}{a(\sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x)}\\&< 1+\frac{a\sum _{i\in N_2}Q_i+\frac{a}{2}P_{1l}^{\sigma _1}}{a(P_{1l}^{\sigma _{1}}+2\sum _{i\in N_2}Q_i)}\\&< \frac{5}{3}. \end{aligned}$$

At last we consider case (3): \(\sum _{i\in N_4}Q_i>P_{1l}^{\sigma _{1}},~~S_4=\emptyset \) and \(Q_{max}+\sum _{i\in N_2}Q_i+\sum _{i\in N_4^*}Q_i<\Delta x.\) In \(\sigma _3^{P2}\), we can see that the orders in \(N_4^*\) and \(N_2\) are produced on day 2, then at least two orders in \(N_{max}\) are finished on day \(2\) in any feasible schedule. Along with the fact that \(d_j=d_{\sigma _1[1]}=d_{\sigma _3^{P2}[1]}\), \(Q_j\ge Q_{\sigma _1[1]}\ge Q_{\sigma _3^{P2}[1]}\) for \(j\in \Delta \) (By EDD-LPT) and the definition of \(N_{max}\), we have

$$\begin{aligned} f(\sigma _3^{P2})-f^*<a\sum _{i\in N_2}+a\sum _{i\in N_4^*}Q_i. \end{aligned}$$

Recall that \(N_4=S_4\bigcup \sigma _3^{P2}[1]\bigcup N_4^*\) and \(|N_4|<\Delta x\), then

$$\begin{aligned} Q_{\sigma _3^{P2}[1]}&> P_{1l}^{\sigma _3^{P2}}\\&\ge P_{1l}^{\sigma _1}\\&> \frac{2}{3}\left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) \\&> \frac{2}{3}\left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+Q_{\sigma _3^{P2}[1]}+\sum _{i\in N_4^*}Q_i \right) , \end{aligned}$$

which indicates that \(Q_{\sigma _3^{P2}[1]}>2 \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\sum _{i\in N_4^*}Q_i \right) \). Thus, we have

$$\begin{aligned} \frac{f(\sigma _3^{P2})}{f^*}&\le 1+\frac{f(\sigma _3^{P2})-f(\sigma _0)}{f(\sigma _0)}\\&< 1+\frac{a\sum _{i\in N_2}Q_i+a\sum _{i\in N_4^*}Q_i}{a \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) }\\&\le 1+\frac{a\sum _{i\in N_2}Q_i+a\sum _{i\in N_4^*}Q_i}{a \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\sum _{i\in N_4^*}Q_i+Q_{\sigma _3[1]} \right) }\\&< 1+\frac{a\sum _{i\in N_2}Q_i+a\sum _{i\in N_4^*}Q_i}{3a \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\sum _{i\in N_4^*}Q_i \right) }\\&< \frac{5}{3}. \end{aligned}$$

Therefore, if the output schedule is \(\sigma _3^{P2}\), then \(\frac{f(\sigma _3^{P2})}{f^*}\le \frac{5}{3}\). \(\square \)

Lemma 5.4

If the heuristic runs step 2 and the output schedule is \(\sigma _4^{P2}\), then \(\frac{f(\sigma _4^{P2})}{f^*}\le \frac{5}{3}\).

Proof

Note that \(\sum _{i\in N_2}Q_i+\sum _{i\in N_4^*}Q_i<P_{1r}^{\sigma _1}+N_4^*<\Delta x\) and \(P_{1l}^{\sigma _1}>\frac{2}{3}\Delta x\), we can see that in any feasible schedule, there is one or two orders in \(N_{max}\) being finished on day 2.

Now consider two possible cases as follows:

(i) If only one order in \(N_{max}\) is finished on day \(2\) in the optimal schedule, then

$$\begin{aligned} f(\pi _2)-f^*<a\sum _{i\in N_2}+a\sum _{i\in N_4^*}Q_i. \end{aligned}$$

As discussed in the proof of Lemma 5.3, we have \(\frac{f(\pi _2)}{f^*}\le \frac{5}{3}\).

(ii) If two orders in \(N_{max}\) are finished on day \(2\) in the optimal schedule, since \(d_i=d_j=d_{\sigma _1[1]}=d_{\sigma _3[1]}\) and

$$\begin{aligned} Q_i\ge Q_{\sigma _1[1]}\ge Q_{\sigma _3^{P2}[1]},~~Q_j\ge Q_{\sigma _1[1]}\ge Q_{\sigma _3^{P2}[1]}~~for~~i,~j\in N_{max}\backslash \{Q_{\sigma _3^{P2}[1]}\}, \end{aligned}$$

we can see that \(Q_i+Q_j\ge Q_{\sigma _1[1]}+Q_{\sigma _3[1]}\). Thus, any feasible schedule where two orders from \(N_{max}\) are finished on day \(2\) will have a total cost greater than or equal to \(f(\pi _1)\). Based on the above analysis, we can see that \(\pi _1\) is an optimal schedule in this case.

Therefore, if the output schedule is \(\sigma _4^{P2}\), then \(\frac{f(\sigma _4^{P2})}{f^*}\le \frac{5}{3}\). \(\square \)

Lemma 5.5

If the heuristic runs step 2 and the output schedule is \(\sigma _5^{P2}\), then \(\frac{f(\sigma _5^{P2})}{f^*}\le \frac{5}{3}\).

Proof

We define:

  • \(S_2\) \(=\) the set of orders which are completed on day \(1\) in \(N_2\) in schedule \(\sigma _5^{P2}\).

  • \(N_2^*\) \(=\) the set of orders which are completed on day \(2\) in \(N_2\) in schedule \(\sigma _5^{P2}\).

As discussed in the proof of Lemma 5.4, we can see that the structure of \(\sigma _{1}\)(and \(\sigma _{0}\)) is \((N_1, N_2, \Delta , \sigma _1[1], N_4)\). By the definitions of \(S_2\) and \(N_2^*\), the structure of \(\sigma _5^{P2}\) is \((N_1, \Delta , \sigma _1[1], S_2, N_2^*, N_4)\). Now consider two possible cases as follows:

Case (1) If \(S_2\ne \emptyset \), then we have \(f(\sigma _5^{P2})-f(\sigma _1)=-aQ_{\sigma _1[1]}+a\sum _{i\in N_2^*}Q_i\) and

$$\begin{aligned} f(\sigma _5^{P2})-f(\sigma _0)&= f(\sigma _5^{P2})-f(\sigma _1)+f(\sigma _1)-f(\sigma _0)\\&= a\sum _{i\in N_2^*}Q_i-a Q_{\sigma _1[1]}+a P_{1l}^{\sigma _1}\\&= a\sum _{i\in N_2^*}Q_i-a P_{1r}^{\sigma _1}\\&= a P_{1l}^{\sigma _5^{P2}}. \end{aligned}$$

Since \(S_2\ne \emptyset \) and \(Q_j\ge Q_{\sigma _5^{P2}[1]}\) for \(j\in S_2\) (By LPT), \(P_{1l}^{\sigma _5^{P2} }<Q_{\sigma _5^{P2}[1]}<\frac{1}{2}\sum _{i\in N_2}Q_i\) and

$$\begin{aligned} \frac{f(\sigma _5^{P2})}{f^*}&\le 1+\frac{f(\sigma _5^{P2})-f(\sigma _0)}{f(\sigma _0)}\\&< 1+\frac{aP_{1l}^{\sigma _5^{P2}}}{a \left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x \right) }\\&< 1+\frac{\frac{a}{2}\sum _{i\in N_2}Q_i}{a\sum _{i\in N_2}Q_i}\\&< \frac{5}{3}. \end{aligned}$$

Case (2) If \(S_2=\emptyset \), then we consider the following two subcases:

(i) If order \(\sigma _5^{P2}[1]\) is finished production on day 1 in the optimal schedule, then at least one order in \(\{\sigma _1[1]\}\bigcup \Delta \) must be finished on day 2 and \(f^*>aQ_{\sigma _1[1]}+aP_{1l}^{\sigma _5^{P2}}>\frac{5}{3}aP_{1l}^{\sigma _5^{P2}}\)(by \(P_{1l}^{\sigma _{1}}>\frac{2}{3}\left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\Delta x\right) \). Thus,

$$\begin{aligned} \frac{f(\sigma _5^{P2})}{f^*}\le 1+\frac{f(\sigma _5^{P2})-f(\sigma _0)}{f^*}<1+\frac{aP_{1l}^{\sigma _5^{P2}}}{\frac{5}{3}aP_{1l}^{\sigma _5^{P2}}}<\frac{5}{3}. \end{aligned}$$

(ii) If order \(\sigma _5^{P2}[1]\) is finished production on day 2 in the optimal schedule, then we have \(f^*>2aP_{1l}^{\sigma _5^{P2}}\) and

$$\begin{aligned} \frac{f(\sigma _5^{P2})}{f^*}\le 1+\frac{f(\sigma _5^{P2})-f(\sigma _0)}{f^*}\le 1+\frac{aP_{1l}^{\sigma _5^{P2}}}{2aP_{1l}^{\sigma _5^{P2}}}<\frac{5}{3}. \end{aligned}$$

Therefore, \(\frac{f(\sigma _5^{P2})}{f^*}<\frac{5}{3}\). \(\square \)

Theorem 3.2 If the output schedule of heuristic \(\mathbf {H}\) is obtained from step 2, then \(\frac{f(\sigma ^{\mathbf {H}})}{f^*}\le 5/3\).

Proof

This is a direct conclusion from Lemmas 5.1 through 5.5. \(\square \)

Appendix B: Proof of Theorem 3.3

Lemma 6.1

If the heuristic runs step 3 and the obtained schedule is \(\sigma _1\), then \(\frac{f(\sigma _1)}{f^*}\le \frac{5}{3}\).

Proof

In schedule \(\sigma _1\), it is clear to see that \(f(\sigma _1)-f(\sigma _0)=a(P_{1l}^{\sigma _1}+P_{2l}^{\sigma _1})<2ac\).

(1) If \(d_{\sigma _{1}[2]}\le d_{max}-1\), then by \(b-a(d_{max}-1)>0\), we have

$$\begin{aligned} f^*\ge f(\sigma _0)&> c[b-a(d_{\sigma _{1}[2]}-1)]+c[b-a(d_{\sigma _{1}[2]}-2)]\\&> c[b-a(d_{max}-1-1)]+c[b-a(d_{max}-1-2)]\\&> ac+2ac=3ac \end{aligned}$$

and

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}<1+\frac{2ac}{3ac}=\frac{5}{3}. \end{aligned}$$

(2) If \(d_{\sigma _{1}[1]}\le d_{max}-2\), then by the same analysis as that in the proof of (1), we have

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}\le \frac{5}{3}. \end{aligned}$$

(3) If \(d_{max}=d_{\sigma _{1}[1]}+1\) and \(P_{1l}^{\sigma _{1}}+P_{2l}^{\sigma _{1}}\le \frac{2}{3}(2c+2\Delta x)\), then

$$\begin{aligned} f(\sigma _0)&> c[b-a(d_{\sigma _{1}[1]}-1)]+c[b-a(d_{\sigma _{1}[2]}-2)]+\Delta x[b-a(d_{max}-3)]\\&> c[b-a(d_{max}-1-1)]+c[b-a(d_{max}-2)]+\Delta x[b-a(d_{max}-3)]\\&> 2ac+2a\Delta x. \end{aligned}$$

By \(P_{1l}^{\sigma _{1}}+P_{2l}^{\sigma _{1}}\le \frac{2}{3}(2c+2\Delta x)\), we have

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}&\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}\\&= 1+\frac{a(P_{1l}^{\sigma _1}+P_{2l}^{\sigma _1})}{f(\sigma _0)}\\&\le 1+\frac{\frac{2a}{3}(2c+2\Delta x)}{2ac+2a\Delta x}\\&= \frac{5}{3}. \end{aligned}$$

(4) If \(d_{max}=d_{\sigma _{1}[1]}+1=4\) and \(\Delta _2=\emptyset \), then the structure of \(\sigma _1\)(and \(\sigma _0\)) is (\(N_1,~\Delta _1,~\sigma _{1}[1],~N_5,~\sigma _{1}[2],~N_4\)). Let \(Q_{\Delta _1}=\) \(\sum _{j\in _{\Delta _1}}Q_j\), then \(\sum _{i\in N_1\bigcup N_5}Q_i+Q_{\Delta _1}+Q_{\sigma _{1}[1]}+Q_{\sigma _{1}[2]}>2c.\) By the definitions of \(N_1\), \(N_5\) and \(\Delta _1\) and \(d_{max}=d_{\sigma _{1}[1]}+1=4\), we can see that the orders in \(N_1\) must be finished production by the end of day 1 and the orders in \(N_5\bigcup \{\sigma _1[1]\}\bigcup \Delta _1\) must be finished production by the end of day 2. Therefore, \(\sigma _1[2]\) must be finished production on day 3. By Remark 3.1 , we can see that if \(\Delta _1\ne \emptyset \), then \(\Delta _1\) contains only one order and \(Q_{\Delta _1}\ge Q_{\sigma _{1}[1]}\) (by EDD-LPT). Since \(\sum _{i\in N_1\bigcup \Delta _1}Q_i<c\),

$$\begin{aligned} f(\sigma _{1})-f^*\le a\sum _{i\in N_5}Q_i+2a\sum _{i\in N_4}Q_i \end{aligned}$$

and

$$\begin{aligned} \sum _{i\in N_4\bigcup N_5}&< \sum _{i\in N}Q_i-P_{1l}^{\sigma _{1}}-P_{2l}^{\sigma _{1}}\\&< 2c+\Delta x-\frac{2}{3}(2c+2\Delta x)\\&< \frac{2c}{3}. \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}&= 1+\frac{f(\sigma _1)-f^*}{f^*}\\&< 1+\frac{a\sum _{i\in N_4}Q_i+2a\sum _{i\in N_5}Q_i}{2ac}\\&< 1+\frac{\frac{4ac}{3}}{2ac}=\frac{5}{3}. \end{aligned}$$

(5) If \(d_{max}=d_{\sigma _{1}[1]}\) and \(P_{1l}^{\sigma _{1}}+P_{2l}^{\sigma _{1}}\le \frac{2}{3} \big (2\sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+c+2\Delta x \big )\), by the same analysis as that in the proof of (3), we have \(f(\sigma _0)\!>\!a \left( 2\sum _{i\in N_1}Q_i\!+\!\sum _{i\in N_2}Q_i\!+\!\sum _{i\in N_3}Q_i\!+\!c\!+\!2\Delta x \right) \) and \(\frac{f(\sigma _1)}{f^*}\le \frac{5}{3}\).

We can conclude that, if the output schedule is \(\sigma _1\), then \(\frac{f(\sigma _1)}{f^*}\le \frac{5}{3}\). \(\square \)

Lemma 6.2

If the heuristic runs step 3 and the obtained schedule is \(\sigma _2^{P3}\), then \(\frac{f(\sigma _2^{P3})}{f^*}\le \frac{5}{3}\).

Proof

In this case, the following three conditions hold:

  1. (1)

    \(d_{max}=d_{\sigma _{1}[1]}+1=d_{\sigma _{1}[2]}=4\);

  2. (2)

    \(P_{1l}^{\sigma _{1}}+P_{2l}^{\sigma _{1}}>\frac{2}{3}(2c+2\Delta x)\);

  3. (3)

    \(\Delta _2\ne \emptyset \).

By Remark 3.1 and condition (3), we can see that \(\Delta _1=\emptyset \) and \(\Delta _2\) contains only one order. The structure of \(\sigma _1\) (and \(\sigma _0\)) is (\(N_1,~\sigma _{1}[1],~N_5,~\Delta _2,~\sigma _{1}[2],~N_4\)) and the structure of \(\sigma _2^{P3}\) is (\(N_1,~\Delta _2,~\sigma _{1}[1],~N_5,~\sigma _{1}[2],~N_4\)). Let \(Q_{\Delta _2}=\) \(\sum _{j\in _{\Delta _2}}Q_j\). By conditions (2) and (3), we have \(\frac{c}{3}<P_{2l}^{\sigma _1}<\frac{c}{2}\), \(P_{1l}^{\sigma _1}>\frac{5c}{6}>\frac{2c}{3}>Q_{\Delta _2}\) and \(\sum _{i\in N_1\bigcup \Delta _2}Q_i<c\). Since \(\Delta _1=\emptyset \), \(\sum _{i\in N_1}Q_i+Q_{\sigma _{1}[1]}>c\). By the same analysis as that of case (4) in Lemma 6.1 , we know that \(\sigma _1[2]\) must be finished production on day 2 and

$$\begin{aligned} f(\sigma _{1})-f^*\le a\sum _{i\in N_5}Q_i+2a\sum _{i\in N_4}Q_i. \end{aligned}$$

By the same analysis as that of case (4) in Lemma 6.1, we have \(\frac{f(\sigma _2^{P3})}{f^*}\le \frac{5}{3}\). \(\square \)

Lemma 6.3

If the heuristic runs step 3 and the obtained schedule is \(\sigma _3^{P3}\), then \(\frac{f(\sigma _3^{P3})}{f^*}\le \frac{5}{3}\).

Proof

It is easy to check that schedules \(\pi _{1}\sim \pi _{12}\) defined in Step 3 of the algorithm are all feasible. By the definitions of \(N_1\) and \(N_2\), the orders in \(N_1\) must be finished production by the end of day 1 and the orders in \(N_2\) must be finished production by the end of day 2. By Remark 3.1, we can see that if \(\Delta _1\ne \emptyset \) , then \(\Delta _2=\emptyset \) and \(\Delta _1\) contains only one order. If \(\Delta _2\ne \emptyset \), then \(\Delta _1=\emptyset \) and \(\Delta _2\) contains only one order. Therefore,

$$\begin{aligned} f(\sigma _{3}^{P3})-f^*\le a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3\bigcup N_5\bigcup N_4}Q_i. \end{aligned}$$

By the same analysis as that of case (4) in Lemma 6.1, we have \(\frac{f(\sigma _2^{P3})}{f^*}\le \frac{5}{3}\). \(\square \)

Lemma 6.4

If the heuristic runs step 3 and the output schedule is \(\sigma _4^{P3}\), then \(\frac{f(\sigma _4^{P3})}{f^*}\le \frac{5}{3}\).

Proof

In this case, the following three conditions hold:

  1. (1)

    \(d_{max}=d_{\sigma _{1}[1]}=d_{\sigma _{1}[2]}\ge 4\);

  2. (2)

    \(P_{1l}^{\sigma _{1}}+P_{2l}^{\sigma _{1}}>\frac{2}{3} \left( 2\sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+c+2\Delta x \right) \);

  3. (3)

    \(N_3\ge \)max\(\{P_{1r}^{\sigma _1},~P_{2r}^{\sigma _1}\}\).

By condition (3), we know that \(\sigma _1[1]\) is finished production on day 1 and \(\sigma _1[2]\) is finished production on day 2 in schedule \(\sigma ^{P3}_4\), \(f(\sigma _4^{P3})-f(\sigma _1)<-a(Q_{\sigma _1[1]}+Q_{\sigma _1[2]})+2a\sum _{i\in N_3}Q_i\) and \(f(\sigma _4^{P3})-f(\sigma _0)<2a\sum _{i\in N_3}Q_i-P_{2r}^{\sigma _1}-P_{1r}^{\sigma _1}.\)

Let \(S_3\) = the set of orders in \(N_3\) which are completed on day \(2\) in schedule \(\sigma _4^{P3}\) and \(Q_{3,max}=\)max\(\{Q_j|j\in N_3\}\). Now we consider three possible cases:

Case 4.1: If \(S_3\ne \emptyset \), we have

$$\begin{aligned} f(\sigma _4^{P3})-f(\sigma _1)&< -a(Q_{\sigma _1[1]}+Q_{\sigma _1[2]})+\frac{a}{2} \left( \sum _{i\in N_3}Q_i-P_{2r}^{\sigma _1} \right) \\&+\,2a \left[ \sum _{i\in N_3}Q_i-\frac{1}{2} \left( \sum _{i\in N_3}Q_i-P_{2r}^{\sigma _1}\right) \right] \\&< -a(Q_{\sigma _1[1]}+Q_{\sigma _1[2]})+\frac{3a}{2}\sum _{i\in N_3}Q_i+\frac{a}{2}P_{2r}^{\sigma _1}\\ \end{aligned}$$

and

$$\begin{aligned} f(\sigma _4^{P3})-f(\sigma _0)<-aP_{2r}^{\sigma _1}+\frac{3a}{2}\sum _{i\in N_3}Q_i+\frac{a}{2}P_{2r}^{\sigma _1}<\frac{3a}{2}\sum _{i\in N_3}Q_i. \end{aligned}$$

By condition (2) and \(P_{2l}^{\sigma _1}<c\), we have \(P_{1l}^{\sigma _1}>\frac{2}{3}\sum _{i\in N_3}Q_i-\frac{c}{3}\). Note that \(P_{1l}^{\sigma _1}+\sum _{i\in N_3}Q_i\le c\), thus \(\frac{2}{3}\sum _{i\in N_3}Q_i-\frac{c}{3}+\sum _{i\in N_3}Q_i\le c\) and \(c>\frac{5}{4}\sum _{i\in N_3}Q_i\). Since \(f^*>a \left( c+\sum _{i\in N_3}Q_i \right) >\frac{9}{4}a\sum _{i\in N_3}Q_i\), \(\frac{f(\sigma _4^{P3})}{f^*}\le \frac{5}{3}\).

Case 4.2: If \(S_3=\emptyset \) and \(\sum _{i\in N_3}Q_i\le Q_{\sigma _1[2]}\), we consider the following subcases:

4.2.1 \(Q_{3,max}\) is finished production on day 1 in the optimal schedule. By \(S_3=\emptyset \), we can see that at least one order \(i\) with \(Q_i\ge Q_{\sigma _{1}[2]}\) is finished production on day 3 in this optimal solution. Thus, \(f^*>aQ_{3,max}+a \left( \sum _{i\in N_3}Q_i-Q_{3,max} \right) +2aQ_{\sigma _1[2]}>3a\sum _{i\in N_3}Q_i\). Note that \(f(\sigma _4^{P3})-f(\sigma _0)\le 2a\sum _{i\in N_3}Q_i\), then \(\frac{f(\sigma _4^{P3})}{f^*}\le \frac{5}{3}\).

4.2.2 \(Q_{3,max}\) is finished production on day 2 in the optimal schedule. By \(S_3=\emptyset \), we can see that at least one order \(i\) with \(Q_i\ge Q_{\sigma _{1}[2]}\) is finished production on day 3 in this optimal schedule. Thus, \(f^*>2aQ_{3,max}+a \left( \sum _{i\in N_3}Q_i-Q_{3,max} \right) +2aQ_{\sigma _1[2]}>3a\sum _{i\in N_3}Q_i\) and \(\frac{f(\sigma _4^{P3})}{f^*}\le \frac{5}{3}\).

4.2.3 \(Q_{3,max}\) is finished production on day 3 in the optimal schedule. We can see that at least one order \(i\) with \(Q_i\ge Q_{\sigma _{1}[2]}\) is finished production on day 2 in the optimal solution. Therefore, \(f^*>3aQ_{3,max}+a \left( \sum _{i\in N_3}Q_i-Q_{3,max}\right) +aQ_{\sigma _1[2]}>2a\sum _{i\in N_3}Q_i+2aQ_{3,max}\). Note that \(f(\sigma _4^{P3})-f(\sigma _0)\le 2a\sum _{i\in N_3}Q_i-(P_{1r}^{\sigma _1}+P_{2r}^{\sigma _1})<a\sum _{i\in N_3}Q_i+Q_{3,max}\), then \(\frac{f(\sigma _4^{P3})}{f^*}\le \frac{5}{3}\).

Case 4.3: If \(S_3=\emptyset \) and \(\sum _{i\in N_3}Q_i>Q_{\sigma _1[2]}\), then by condition (2) and \(P_{1l}^{\sigma _1}\le c-\sum _{i\in N_3}Q_i\), we have

$$\begin{aligned} \frac{2}{3} \left( \sum _{i\in N_3}Q_i+c \right)&< \frac{2}{3} \left( 2\sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+c+2\Delta x \right) \\&< P_{1l}^{\sigma _{1}}+P_{2l}^{\sigma _{1}}\\&< c-\sum _{i\in N_3}Q_i+\sum _{i\in N_3}Q_i. \end{aligned}$$

Therefore, \(c>2\sum _{i\in N_3}Q_i\) and \(f^*>c+\sum _{i\in N_3}Q_i>3\sum _{i\in N_3}Q_i\). Note that \(f(\sigma _4^{P3})-f(\sigma _0)\le 2a\sum _{i\in N_3}Q_i\), then \(\frac{f(\sigma _4^{P3})}{f^*}\le \frac{5}{3}\). \(\square \)

Lemma 6.5

If the heuristic runs step 3 and the output schedule is \(\sigma _5^{P3}\), then \(\frac{f(\sigma _5^{P3})}{f^*}\le \frac{5}{3}\).

Proof

In this case, the following three conditions hold:

  1. (1)

    \(d_{max}=d_{\sigma _{1}[1]}=d_{\sigma _{1}[2]}\ge 4\);

  2. (2)

    \(P_{1l}^{\sigma _{1}}+P_{2l}^{\sigma _{1}}>\frac{2}{3} \left( 2\sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+c+2\Delta x \right) \);

  3. (3)

    \(N_3<\)max\(\{P_{1r}^{\sigma _1},~~P_{2r}^{\sigma _1}\}\).

Now we consider the following possible cases:

Case 5.1: If \(\sigma _1[1]\) is completed on day 1 and \(\sigma _1[2]\) is completed on day 2 in schedule \(\pi _{13}\), then

$$\begin{aligned} f(\pi _{13})-f(\sigma _1)<-a(Q_{\sigma _1[1]}+Q_{\sigma _1[2]})+a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i \end{aligned}$$

and

$$\begin{aligned} f(\pi _{13})-f(\sigma _0)<-a(P_{1r}^{\sigma _1}+P_{2r}^{\sigma _1})+a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i. \end{aligned}$$

By condition (3), we have \(f(\pi _{13})-f(\sigma _0)<a\sum _{i\in N_2}Q_i+a\sum _{i\in N_3}Q_i.\) Note that

$$\begin{aligned} f^*>ac+a\sum _{i\in N_2}Q_i+a\sum _{i\in N_3}Q_i>2\left( a\sum _{i\in N_2}Q_i+a\sum _{i\in N_3}Q_i\right) , \end{aligned}$$

thus, \(\frac{f(\pi _{13})}{f^*}\le \frac{5}{3}\).

Case 5.2: If \(\sigma _1[1]\) is completed on day 1 and \(\sigma _1[2]\) is completed on day 3 in schedule \(\pi _{13}\), then \(\sum _{i\in N_3}<P_{2r}^{\sigma _1}\) and

$$\begin{aligned} \sum _{i\in N_1\bigcup \Delta _1\bigcup \Delta _2\bigcup N_2}Q_i+Q_{\sigma _1[1]}+Q_{\sigma _1[2]}>2c. \end{aligned}$$

By EDD-LPT, we have \(d_j=d_{max}=d_{\sigma _1[2]}\) and \(Q_j\ge Q_{\sigma _1[2]}\) for \(j\in \{\sigma _1[1]\}\bigcup \Delta _1\bigcup \Delta _2\). By the definitions of \(N_1\) and \(N_2\), the orders in \(N_1\) must be finished production by the end of day 1 and the orders in \(N_2\) must be finished production by the end of day 2. Consequently, there must be one order \(i\) with \(Q_i\ge Q_{\sigma _1[2]}\) being completed on day 3. Now we consider two subcases:

Case 5.2.1: If \(d_{max}=4\), then \(N_3=\emptyset \). By the same analysis as that of case 5.1, we have \(f(\pi _{13})-f(\sigma _0)<aP_{2l}^{\sigma _1}+a\sum _{i\in N_2}Q_i\). Note that \(f^*>a\sum _{i\in N_2}Q_i+aQ_{\sigma _1[2]}+c>\frac{3}{2} \left( a\sum _{i\in N_2}Q_i+aQ_{\sigma _1[2]}\right) \), then \(\frac{f(\pi _{13})}{f^*}\le \frac{5}{3}\).

Case 5.2.2: If \(d_{max}\ge 5\), then by \(\sum _{i\in N_3}<P_{2r}^{\sigma _1}\),

$$\begin{aligned} f^*&> 2a\sum _{i\in N_2}Q_i+2aQ_{\sigma _1[2]}+a\sum _{i\in N_3}Q_i\\&= 2a\sum _{i\in N_2}Q_i+2aP_{2l}^{\sigma _1}+2aP_{2r}^{\sigma _1}+a\sum _{i\in N_3}Q_i\\&> 2a\sum _{i\in N_2}Q_i+2aP_{2l}^{\sigma _1}+3a\sum _{i\in N_3}Q_i\\&> \frac{3}{2}a \left( P_{2l}^{\sigma _1}+\sum _{i\in N_2}Q_i+2\sum _{i\in N_3}Q_i \right) . \end{aligned}$$

By the same analysis as that of case 5.1, \(f(\pi _{13})-f(\sigma _0)<aP_{2l}^{\sigma _1}+a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i\) and \(\frac{f(\pi _{13})}{f^*}\le \frac{5}{3}\).

Case 5.3: If \(\sigma _1[1]\) is completed on day 2 in schedule \(\pi _{13}\), then (1) \(\sum _{i\in N_1\bigcup \Delta _1}Q_i+Q_{\sigma _1[1]}>c\), (2) there must be one order \(i\in \{\sigma _1[1]\}\bigcup \Delta _1\) with \(Q_i\ge Q_{\sigma _1[1]}\) being completed on day 2, and (3) \(\sum _{i\in N_2\bigcup N_3}Q_i<P_{1r}^{\sigma _1}\).

Let \(Q_{\Delta _2,max}=\)max\(\{Q_j|j\in \Delta _2\}\) and \(S_{\Delta _2}\) = the set of orders from \(\Delta _2\) which are completed on day \(1\) in schedule \(\pi _{14}\). Now we consider the following possible subcases:

Case 5.3.1: If \(S_{\Delta _2}\ne \emptyset \) and \(\sigma _1[2]\) is completed on day 2 in schedule \(\pi _{14}\), then

$$\begin{aligned} f(\pi _{14})-f(\sigma _1)<-\frac{a}{2} \left( \sum _{i\in N_2\bigcup N_3}Q_i+P_{1l}^{\sigma _1} \right) +a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i-aQ_{\sigma _1[2]} \end{aligned}$$

and

$$\begin{aligned} f(\pi _{14})-f(\sigma _0)&< -\frac{a}{2}\left( \sum _{i\in N_2\bigcup N_3}Q_i+P_{1l}^{\sigma _1}\right) +a\sum _{i\in N_2}Q_i\\&+2a\sum _{i\in N_3}Q_i-a Q_{\sigma _1[2]}+a(P_{1l}^{\sigma _1}+P_{2l}^{\sigma _1})\\&< \frac{a}{2} \left( P_{1l}^{\sigma _1}+\sum _{i\in N_2}Q_i \right) +\frac{3a}{2}\sum _{i\in N_3}Q_i. \end{aligned}$$

Note that \(S_{\Delta _2}\ne \emptyset \), then \(\Delta _2\ne \emptyset \) and \(P_{2l}^{\sigma _1}<\frac{c}{2}\). By \(c>\sum _{i\in N_3}Q_i+P_{1l}^{\sigma _1}\) and condition (2), we have

$$\begin{aligned} c-\sum _{i\in N_3}Q_i+\frac{c}{2}&> P_{1l}^{\sigma _1}+P_{2l}^{\sigma _1}\\&> \frac{2}{3}\left( \sum _{i\in N_3}Q_i+c \right) \\ \end{aligned}$$

and \(c>2\sum _{i\in N_3}Q_i\). Therefore,

$$\begin{aligned} f^*&> a\sum _{i\in N_2\bigcup N_3}Q_i+ac\\&= a\sum _{i\in N_2\bigcup N_3}Q_i+\frac{3ac}{4}+\frac{ac}{4}\\&> a\sum _{i\in N_2\bigcup N_3}Q_i+\frac{3a}{4}\left( P_{1l}^{\sigma _1}+\sum _{i\in N_3}Q_i \right) +\frac{a}{2}\sum _{i\in N_3}Q_i\\&\ge \frac{3a}{2} \left[ \frac{1}{2} \left( P_{1l}^{\sigma _1}+\sum _{i\in N_2}Q_i \right) +\frac{3}{2}\sum _{i\in N_3}Q_i \right] \end{aligned}$$

and \(\frac{f(\pi _{14})}{f^*}\le \frac{5}{3}\).

Case 5.3.2: If \(S_{\Delta _2}\ne \emptyset \) and \(\sigma _1[2]\) is completed on day 3 in schedule \(\pi _{14}\), then \(\sum _{i\in N_3}<P_{2r}^{\sigma _1}\). By the same analysis as that for case 5.2, there must be one order \(i\) with \(Q_i\ge Q_{\sigma _1[2]}\) being completed on day 3. Since there must be one order \(i\in \{\sigma _1[1]\}\bigcup \Delta _1\) with \(Q_i\ge Q_{\sigma _1[1]}\) being completed on day 2,

$$\begin{aligned} f^*>a\sum _{i\in N_2\bigcup N_3}Q_i+aQ_{\sigma _1[1]}+2aQ_{\sigma _1[2]}. \end{aligned}$$

By \(\sum _{i\in N_3}<P_{2r}^{\sigma _1}\) and \(\sum _{i\in N_2\bigcup N_3}<P_{1r}^{\sigma _1}\), we have

$$\begin{aligned} f^*>2a\sum _{i\in N_2}Q_i+3a\sum _{i\in N_3}Q_i+aP_{1l}^{\sigma _1}+2aP_{2l}^{\sigma _1}. \end{aligned}$$

By the same analysis as that of case 5.3.1,

$$\begin{aligned} f(\pi _{14})-f(\sigma _0)<\frac{a}{2} \left( P_{1l}^{\sigma _1}+\sum _{i\in N_2}Q_i \right) +\frac{3a}{2}\sum _{i\in N_3}Q_i+aP_{2l}^{\sigma _1} \end{aligned}$$

and \(\frac{f(\pi _{14})}{f^*}\le \frac{5}{3}\).

Case 5.3.3: If \(S_{\Delta _2}=\emptyset \), we consider the following four subcases:

Case 5.3.3.1: If \(\Delta _2\ne \emptyset \) and \(\sigma _1[2]\) is completed on day 2 in schedule \(\pi _{14}\), note that \(\sum _{i\in N_2\bigcup N_3}Q_i<P_{1r}^{\sigma _1}\), then \(Q_{\Delta _2,max}>P_{1l}^{\sigma _1}+\sum _{i\in N_2\bigcup N_3}Q_i\) and

$$\begin{aligned} f^*>a\sum _{i\in N_2\bigcup N_3}Q_i+aQ_{\sigma _1[1]}+aQ_{\Delta _2,max}>3a\sum _{i\in N_2\bigcup N_3}Q_i+2aP_{1l}^{\sigma _1}. \end{aligned}$$

By then same analysis as that of case 5.3.1, we have

$$\begin{aligned} f(\pi _{14})-f(\sigma _0)<a \left( P_{1l}^{\sigma _1}+\sum _{i\in N_2}Q_i \right) +2a\sum _{i\in N_3}Q_i \end{aligned}$$

and \(\frac{f(\pi _{14})}{f^*}\le \frac{5}{3}\).

Case 5.3.3.2: If \(\Delta _2\ne \emptyset \) and \(\sigma _1[2]\) is completed on day 3 in schedule \(\pi _{14}\), note that either \(O_{\Delta _2,max}\) or \(\sigma _1[1]\) can not be completed on day 1 and there must be one order \(i\) with \(Q_i\ge Q_{\sigma _1[2]}\) being completed on day 3, therefore,

$$\begin{aligned} f^*&> a\sum _{i\in N_2\bigcup N_3}Q_i+aQ_{\sigma _1[1]}+aQ_{\Delta _2,max}\\&+\,2aQ_{\sigma _1[2]}>3a\sum _{i\in N_2\bigcup N_3}Q_i+2aP_{1l}^{\sigma _1}+2aP_{2l}^{\sigma _1}. \end{aligned}$$

By the same analysis as that of case 5.3.1, we have

$$\begin{aligned} f(\pi _{14})-f(\sigma _0)<a \left( P_{1l}^{\sigma _1}+\sum _{i\in N_2}Q_i \right) +2a\sum _{i\in N_3}Q_i+aP_{2l}^{\sigma _1} \end{aligned}$$

and \(\frac{f(\pi _{14})}{f^*}\le \frac{5}{3}\).

Case 5.3.3.3: If \(\Delta _2=\emptyset \) and \(\sigma _1[2]\) is completed on day 2 in schedule \(\pi _{14}\), it is then clear to see that \(\sigma _1[1]\) is completed on day 2 in schedule \(\pi _{15}\) and \(f(\pi _{15})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i\). By condition (2) and \(\sum _{i\in N_2\bigcup N_3}<P_{1r}^{\sigma _1}\), we have

$$\begin{aligned} 2c-\sum _{i\in N_2\bigcup N_3}Q_i-P_{2r}^{\sigma _1}\ge P_{1l}^{\sigma _{1}}+P_{2l}^{\sigma _{1}}>\frac{2}{3}\left( \sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+c \right) \end{aligned}$$

and \(c>2\sum _{i\in N_2\bigcup N_3}Q_i\). Thus,

$$\begin{aligned} f^*>ac+a\sum _{i\in N_2\bigcup N_3}Q_i>3a\sum _{i\in N_2\bigcup N_3}Q_i \end{aligned}$$

and \(\frac{f(\pi _{15})}{f^*}\le \frac{5}{3}\).

Case 5.3.3.4: If \(\Delta _2=\emptyset \) and \(\sigma _1[2]\) is completed on day 3 in schedule \(\pi _{14}\), by the same analysis as that of case 5.3.2, we have

$$\begin{aligned} f^*&> a\sum _{i\in N_2\bigcup N_3}Q_i+aQ_{\sigma _1[1]}+2aQ_{\sigma _1[2]}>2a\sum _{i\in N_2}Q_i\\&+\,3a\sum _{i\in N_3}Q_i+aP_{1l}^{\sigma _1}+2aP_{2l}^{\sigma _1} \end{aligned}$$

and

$$\begin{aligned} f(\pi _{14})-f(\sigma _0)<\frac{a}{2} \left( P_{1l}^{\sigma _1}+\sum _{i\in N_2}Q_i \right) +\frac{3a}{2}\sum _{i\in N_3}Q_i+aP_{2l}^{\sigma _1}. \end{aligned}$$

Therefore, \(\frac{f(\pi _{14})}{f^*}\le \frac{5}{3}\). \(\square \)

Theorem 3.3 If the output schedule of heuristic \(\mathbf {H}\) is obtained from step 3, then \(\frac{f(\sigma ^{\mathbf {H}})}{f^*}\le 5/3\).

Proof

This is a direct conclusion from Lemmas 6.1 through 6.5. \(\square \)

Appendix C: Proof of Theorem 3.4

Lemma 7.1

If the heuristic runs step 4 and the obtained schedule is \(\sigma _1\), then \(\frac{f(\sigma ^{\mathbf {H}})}{f^*}\le \frac{5}{3}\).

Proof

In schedule \(\sigma _1\), it is clear to see that

$$\begin{aligned} f(\sigma _1)-f(\sigma _0)=a\sum _{i=1}^{3}P_{il}^{\sigma _1}~~~~and~~~~f^*\ge f(\sigma _0). \end{aligned}$$

(1) If \(d_{\sigma _{1}[2]}\le d_{max}-1\), by \(b-a(d_{max}-1)>0\) and EDD-LPT, we have

$$\begin{aligned} f(\sigma _0)&> c[b-a(d_{\sigma _1[2]}-1)]+c[b-a(d_{\sigma _1[2]}-2)]+c[b-a(d_{max}-3)]\\&> ac+2ac+2ac\\&= 5ac \end{aligned}$$

and \(\frac{f(\sigma _1)}{f^*}\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}=1+\frac{\sum _{i=1}^{3}P_{il}^{\sigma _1}}{f(\sigma _0)}<1+\frac{3ac}{5ac}<\frac{5}{3}.\)

(2) If \(d_{\sigma _{1}[1]}\le d_{max}-2\), then we have

$$\begin{aligned} f(\sigma _0)&> c[b-a(d_{\sigma _1[1]}-1)]+c[b-a(d_{max}-2)]+c[b-a(d_{max}-3)]\\&> 2ac+ac+2ac\\&= 5ac \end{aligned}$$

and \(\frac{f(\sigma _1)}{f^*}\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}=1+\frac{\sum _{i=1}^{3}P_{il}^{\sigma _1}}{f(\sigma _0)}<1+\frac{3ac}{5ac}<\frac{5}{3}.\)

(3) If \(d_{max}=d_{\sigma _{1}[1]}+1\) and \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}\le \frac{2}{3}(4c+3\Delta x)\), then

$$\begin{aligned} f(\sigma _0)&> c[b-a(d_{\sigma _1[1]}-1)]+c[b-a(d_{max}-2)]+c[b-a(d_{max}-3)]\\&+\,\Delta x[b-a(d_{max}-4)]\\&> ac+ac+2ac+3\Delta x\\&= a(4c+3\Delta x) \end{aligned}$$

and

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}&\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}\\&= 1+\frac{a\sum _{i=1}^{3}P_{il}^{\sigma _1}}{f(\sigma _0)}\\&< 1+\frac{\frac{2}{3}a(4c+3\Delta x)}{a(4c+3\Delta x)}\\&= \frac{5}{3}. \end{aligned}$$

(4) If \(d_{max}=d_{\sigma _{1}[1]}\) and \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}\le \frac{2}{3}\big (3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x \big )\), we have

$$\begin{aligned} f(\sigma _0)&> \sum _{i\in N_1}Q_i[b-a(2-1)]+\sum _{i\in N_2}Q_i[b-a(3-1)]+\sum _{i\in N_3}Q_i[b-a(4-1)]\\&+\,\sum _{i\in N_4}Q_i[b-a(5-1)]+c[b-a(d_{max}-2)]+c[b-a(d_{max}-3)]\\&+\,\Delta x[b-a(d_{max}-4)]\\&> a\left( 3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x \right) \end{aligned}$$

and

$$\begin{aligned} \frac{f(\sigma _1)}{f^*}&\le 1+\frac{f(\sigma _1)-f(\sigma _0)}{f(\sigma _0)}\\&= 1+\frac{a\sum _{i=1}^{3}P_{il}^{\sigma _1}}{f(\sigma _0)}\\&< 1{+}\frac{\frac{2}{3}a(3\sum _{i\in N_1}Q_i{+}2\sum _{i\in N_2}Q_i{+}\sum _{i\in N_3}Q_i{+}\sum _{i\in N_4}Q_i{+}3c}{a(3\sum _{i\in N_1}Q_i{+}2\sum _{i\in N_2}Q_i{+}\sum _{i\in N_3}Q_i{+}\sum _{i\in N_4}Q_i{+}3c}\frac{{+}3\Delta x)}{{+}3\Delta x )}\\&= \frac{5}{3}. \end{aligned}$$

We can conclude that, if the output schedule is \(\sigma _1\), then \(\frac{f(\sigma _1)}{f^*}\le \frac{5}{3}\). \(\square \)

Lemma 7.2

If the heuristic runs step 4 and the output schedule is \(\sigma _2^{P4}\), then \(\frac{f(\sigma _2^{P4})}{f^*}{\le } \frac{5}{3}\).

Proof

Let \(N_{5}=\{i\in N|d_{i}=d_{\sigma _1[1]}\}\backslash \{\sigma _1[1]\}\), if \(d_{max}\ge d_{\sigma _1[1]}+1\). In this case, the following three conditions hold:

  1. (1)

    \(d_{\sigma _1[1]}=d_{max}-1=4\);

  2. (2)

    \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>\frac{2}{3}(4c+3\Delta x)\);

  3. (3)

    \(d_{\sigma _1[2]}=d_{max}=5\).

By condition (2) and \(Q_i<c\), we have \(P_{il}^{\sigma _{1}}>\frac{2}{3}c+2\Delta x\), for \(i=1 , 2, 3\), and \(Q_{\sigma _1[i]}>\frac{2}{3}c+2\Delta x\), for \(i=1 , 2, 3\). The structure of \(\sigma _1\)(and \(\sigma _0\)) is \((N_1, N_2, \sigma _1[1], N_5, \sigma _1[2], \sigma _1[3], N_6).\) By the definitions of \(N_1\) and \(N_2\), the orders in \(N_1\) must be finished production by the end of day 1 and the orders in \(N_2\) must be finished production by the end of day 2. By the definition of \(N_5\) and condition (1), the orders in \(N_5\bigcup \{\sigma _1[1]\}\) must be finished production by the end of day 3. By \(Q_{\sigma _1[i]}>\frac{2}{3}c+2\Delta x\), for \(i=1 , 2, 3\), we can see that at most one order in \(\{\sigma _1[1], \sigma _1[2], \sigma _1[3]\}\) is finished on day 1 in any feasible schedule. Since \(\sum _{i\in N_1\bigcup N_2\bigcup N_5}Q_i+\sum _{i=1}^{3}Q_{\sigma _1[i]}>3c\), at least one order in \(\{\sigma _1[2], \sigma _1[3]\}\) is finished on day 4 in any feasible schedule. Therefore,

$$\begin{aligned} f(\sigma _2^{P4})-f^*\le a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_5}Q_i+3a\sum _{i\in N_6}Q_i. \end{aligned}$$

Note that \(\sum _{i\in N_2\bigcup N_5\bigcup N_6}Q_i<\frac{1}{3}c\) and \(f(\sigma _0)>a(4c+3\Delta x)\), then

$$\begin{aligned} \frac{f(\sigma _2^{P4})}{f^*}&\le 1+\frac{f(\sigma _2^{P4})-f^*}{f(\sigma _0)}\\&< 1+\frac{a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_5}Q_i+3a\sum _{i\in N_6}}{a(4c+3\Delta x)}\\&< 1+\frac{ac}{4ac}\\&< \frac{5}{3}. \end{aligned}$$

\(\square \)

Lemma 7.3

If the heuristic runs step 4 and the output schedule is \(\sigma _3^{P4}\), then \(\frac{f(\sigma _3^{P4})}{f^*}\le \frac{5}{3}\).

Proof

We define:

  • \(\Delta _1\) \(=\)  the set of orders between \(N_4\) and \(\sigma _1[1]\) in schedule \(\sigma _1\).

  • \(\Delta _2\) \(=\) the set of orders between \(\sigma _1[1]\) and \(\sigma _1[2]\) in schedule \(\sigma _1\).

  • \(N_{6}\) \(=\) the set of the orders processed after order \(\sigma _{1}[3]\) in \(\sigma _1\).

  • \(S=N_2\bigcup N_3\bigcup N_4\bigcup N_6\).

We first consider case (1): \(d_{max}=d_{\sigma _{1}[1]}+1\), \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>\frac{2}{3}(4c+3\Delta x)\) and \(d_{max}\ge 6\). As discussed in the proof of Lemma 7.2, the structure of \(\sigma _1\) (and \(\sigma _0\)) is \((N_1, N_2, N_3, \sigma _1[1], N_5,\) \( \sigma _1[2], \sigma _1[3], N_6)\) and \(Q_{\sigma _1[i]}>\frac{2}{3}c+2\Delta x\), for \(i=1 , 2, 3\). By the same analysis as that in the proof of Lemma 7.2, we can see that at most one order from \(\{\sigma _1[1], \sigma _1[2], \sigma _1[3]\}\) is started and completed in the same day in any feasible schedule, then

$$\begin{aligned} f(\sigma _3^{P4})-f^*\le a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+3a\sum _{i\in N_5\bigcup N_6}Q_i. \end{aligned}$$

Since \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>\frac{2}{3}(4c+3\Delta x)\), \(\sum _{i\in S}Q_i<\frac{1}{3}c\). Note that \(f(\sigma _0)>a(4c+3\Delta x)\), then

$$\begin{aligned} \frac{f(\sigma _3^{P4})}{f^*}&\le 1+\frac{f(\sigma _3^{P4})-f^*}{f(\sigma _0)}\\&< 1+\frac{a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+3a\sum _{i\in N_5\bigcup N_6}Q_i}{a(4c+3\Delta x)}\\&< 1+\frac{ac}{4ac}\\&< \frac{5}{3}. \end{aligned}$$

Next we consider case (2): \(d_{max}=d_{\sigma _{1}[1]}\), \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>\frac{2}{3} \big (3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x \big )\) and \(P_{3l}^{\sigma _1}\ge \frac{c}{2}\). Schedule \(\sigma _{1}\) has the structure of \((N_1, N_2, N_3,\) \( N_4, \Delta _1, \sigma _{1}[1], \Delta _2,\) \( \sigma _{1}[2], \Delta _3, \sigma _{1}[3], N_6)\) and the following three conditions hold:

  1. (1)

    \(d_{max}=d_{\sigma _{1}[1]}\);

  2. (2)

    \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>\frac{2}{3}\big (3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x \big )\);

  3. (3)

    \(P_{3l}^{\sigma _1}\ge \frac{c}{2}\).

Based on these conditions, we have the following conclusions:

Result 1: \(Q_{\sigma _1[1]}>\frac{2}{3}c\). By condition \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>2c+2\Delta x\) and \(Q_i<c\), for \(i\in N\), we have \(P_{max,l}^{\sigma _1}=\)max\(\{P_{il}^{\sigma _1}|\) \(i=1, 2, 3\}>\frac{2}{3}(c+\Delta x)\). By EDD-LPT, we have \(Q_{\sigma _1[1]}>\frac{2}{3}c\).

Result 2: \(\Delta _1=\emptyset \). If \(\Delta _1\ne \emptyset \), we have \(d_j=d_{max}\) and \(Q_j\ge Q_{\sigma _1[1]}>\frac{2}{3}c\) for \(j\in \Delta _1\) (By EDD-LPT). Thus, \(P_{1l}^{\sigma _1}<\frac{1}{3}c\). Because \(Q_{\sigma _1[1]}>\frac{2}{3}c\), \(P_{1r}^{\sigma _1}>\frac{1}{3}c\). By \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>2c+2\Delta x\), we have \(P_{2l}^{\sigma _1}+P_{3l}^{\sigma _1}>\frac{5}{3}c\) and \(P_{2l}^{\sigma _1}>\frac{2}{3}c\). Thus \(P_{1r}^{\sigma _1}+P_{2l}^{\sigma _1}>c\), which contradicts with the available daily production capacity of day 2. Therefore, \(\Delta _1=\emptyset \).

Result 3: \(\Delta _3=\emptyset \). If \(\Delta _3\ne \emptyset \), \(d_j=d_{max}\) and \(Q_j\ge Q_{\sigma _1[3]}>\frac{1}{2}c\) for \(j\in \Delta _3\) (By EDD-LPT). By \(P_{3l}^{\sigma _1}\ge \frac{c}{2}\), we have \(Q_j+P_{3l}^{\sigma _1}>c\) for \(j\in \Delta _3\), which contradicts with the available daily production capacity of day 3. Therefore, \(\Delta _3=\emptyset \).

Result 4: \(\Delta _2=\emptyset \). If \(\Delta _2\ne \emptyset \), we have \(d_j=d_{max}\), \(Q_j\ge Q_{\sigma _1[3]}>\frac{1}{2}c\) and \(P_{2l}^{\sigma _1}<\frac{c}{2}\) for \(j\in \Delta _2\) (By EDD-LPT). Consider the following two cases:

Case (i) If \(P_{3l}^{\sigma _1}\ge \frac{2c}{3}\), then \(Q_j\ge Q_{\sigma _1[2]}\ge Q_{\sigma _1[3]}>\frac{2c}{3}\) for \(j\in \Delta _2\). By the same analysis as that for Result 2, \(\Delta _2=\emptyset \).

Case (ii) If \(\frac{c}{2}\le P_{3l}^{\sigma _1}<\frac{2c}{3}\), then \(P_{1l}^{\sigma _1}+P_{2l}^{\sigma _1}>\frac{4c}{3}\) and \(P_{2l}^{\sigma _1}>\frac{c}{3}\). By Result 3, we have \(P_{2r}^{\sigma _1}>\frac{c}{3}\) and \(Q_{\sigma _1[2]}=P_{2l}^{\sigma _1}+P_{2r}^{\sigma _1}>\frac{2c}{3}\). Thus, \(Q_j\ge Q_{\sigma _1[2]}>\frac{2c}{3}\) for \(j\in \Delta _2\), and by the same analysis as that for Result 2, \(\Delta _2=\emptyset \).

Based on the above analysis, we can see that the structure of \(\sigma _1\) (and \(\sigma _0\)) is \((N_1, N_2, N_3, N_4, \sigma _{1}[1], \) \( \sigma _{1}[2], \sigma _{1}[3], N_6)\). Since \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>\frac{2}{3}(3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x)\),

$$\begin{aligned} \sum _{i\in S}Q_i&< \sum _{i\in N}Q_i-\sum _{i=1}^{3}P_{il}^{\sigma _1}\\&< c-\Delta x-\frac{2}{3}\left( \sum _{i\in N_1}Q_i+\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i \right) \\&< c-\frac{2}{3}\left( \sum _{i\in S}Q_i \right) \end{aligned}$$

and \(\sum _{i\in S}Q_i<\frac{3c}{5}\).

As discussed in the proof of Lemma 7.2, we have

$$\begin{aligned} f(\sigma _0)>a \left( 3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x \right) >3ac \end{aligned}$$

and

$$\begin{aligned} f(\sigma _3^{P4})-f^*\le a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+3a\sum _{i\in N_4\bigcup N_6}Q_i. \end{aligned}$$

Thus,

$$\begin{aligned} \frac{f(\sigma _3^{P4})}{f^*}&\le 1+\frac{f(\sigma _3^{P4})-f^*}{f(\sigma _0)}\\&< 1+\frac{a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+3a\sum _{i\in N_4\bigcup N_6}Q_i}{3ac}\\&< 1+\frac{\frac{9c}{5}}{3ac}\\&< \frac{5}{3}. \end{aligned}$$

\(\square \)

Lemma 7.4

If the heuristic runs step 4 and the output schedule is \(\sigma _4^{P4}\), then \(\frac{f(\sigma _4^{P4})}{f^*}\le \frac{5}{3}\).

Proof

In this case, the following three conditions hold:

  1. (1)

    \(d_{max}=d_{\sigma _{1}[1]}\);

  2. (2)

    \(\sum _{i=1}^{3}P_{il}^{\sigma _{1}}>\frac{2}{3}\big (3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x \big )\);

  3. (3)

    \(P_{3l}^{\sigma _1}<\frac{c}{2}\).

Based on these conditions, we have the following conclusions:

Result 1: \(\Delta _1=\emptyset \). As discussed in the proof of Lemma 7.3, we have \(\Delta _1=\emptyset \).

Result 2: \(\Delta _2=\emptyset \). If \(\Delta _2\ne \emptyset \), then \(d_j=d_{max}\), \(Q_j\ge Q_{\sigma _1[2]}\) and \(P_{2l}^{\sigma _1}<\frac{c}{2}\) for \(j\in \Delta _2\) (By EDD-LPT). By condition (2), we can see that \(P_{1l}^{\sigma _1}+P_{3l}^{\sigma _1}>\frac{3}{2}c\). By condition (3), we have \(P_{1l}^{\sigma _1}>c\), which contradicts with \(Q_i<c\) for \(i\in N\). Thus, \(\Delta _2=\emptyset \).

Result 3: \(\Delta _3\ne \emptyset \). If \(\Delta _3=\emptyset \), by condition (3) and \(P_{2r}^{\sigma _1}+P_{3l}^{\sigma _1}=c\), we have \(P_{2r}^{\sigma _1}>\frac{c}{2}\) and \(P_{2l}^{\sigma _1}<\frac{c}{2}\). By condition (2), we have \(P_{1l}^{\sigma _1}+P_{3l}^{\sigma _1}>\frac{3}{2}c\), and by condition (3), we have \(P_{1l}^{\sigma _1}>c\), which contradicts with \(Q_i<c\) for \(i\in N\). Therefore, \(\Delta _3\ne \emptyset \).

Result 4: \(P_{3l}^{\sigma _1}>\frac{5}{3}\sum _{i\in E}Q_i+2\Delta x\) (Let \(E=N_1\bigcup N_2\bigcup N_3\bigcup N_4\)). By condition (2) and \(P_{1l}^{\sigma _1}+\sum _{i\in E}Q_i=c\), we have

$$\begin{aligned} c-\sum _{i\in E}Q_i+c+P_{3l}^{\sigma _1}&> P_{1l}^{\sigma _1}+P_{2l}^{\sigma _1}+P_{3l}^{\sigma _1}\\&> \frac{2}{3}\left( 3\sum _{i\in N_1}Q_i{+}2\sum _{i\in N_2}Q_i{+}\sum _{i\in N_3}Q_i{+}\sum _{i\in N_4}Q_i{+}3c{+}3\Delta x \right) \\&> \frac{2}{3}\left( \sum _{i\in E}Q_i+3c+3\Delta x \right) \end{aligned}$$

and \(P_{3l}^{\sigma _1}>\frac{5}{3}\sum _{i\in E}Q_i+2\Delta x\).

Result 5: \(\sum _{i\in \Delta _3}Q_i<P_{1l}^{\sigma _1}<P_{2l}^{\sigma _1}\). It is clear to see that

$$\begin{aligned} \sum _{i\in \Delta _3}Q_i+P_{3l}^{\sigma _1}<c=P_{1l}^{\sigma _1}+\sum _{i\in E}Q_i=P_{1r}^{\sigma _1}+P_{2l}^{\sigma _1}. \end{aligned}$$

By \(P_{1l}^{\sigma _1}+P_{1r}^{\sigma _1}=Q_{\sigma _1[1]}<c\) and Result 4, we have \(\sum _{i\in \Delta _3}Q_i<P_{1l}^{\sigma _1}<P_{2l}^{\sigma _1}\).

Result 6: \(\sigma _{1}[3]\) is the only order that is finished production on day 4 in \(\sigma _4^{P4}\). This is implied by Result 4.

From the above analysis, we can see that the structure of \(\sigma _1\) (and \(\sigma _0\)) is \((N_1, N_2, N_3, N_4, \sigma _{1}[1], \) \( \sigma _{1}[2], \Delta _3, \sigma _{1}[3], N_6)\). By the definition of \(N_i\), the orders in \(N_i\) must be finished production by the end of day \(i\), for \(i=1,2,3\).

Now we consider three possible cases:

Case (4.1) If at least one order in \(\Delta _3\) is finished production on day 1 in the optimal schedule, by the fact that \(d_j=d_{max}\), \(Q_j\ge Q_{\sigma _3[1]}\) for \(j\in \Delta _3\) (By EDD-LPT) and Result 4, we have \(Q_j+Q_{\sigma _1[1]}+Q_{\sigma _1[2]}>2c\) and \(Q_j+\)min\(\{Q_{\sigma _1[1]},Q_{\sigma _1[2]}\}>c\) for \(j\in \Delta _3\). Furthermore, none of \(\{Q_{\sigma _1[1]},Q_{\sigma _1[2]}\}\) can be finished on day 1, at most one order of \(\{Q_{\sigma _1[1]},Q_{\sigma _1[2]}\}\) is completed by day 2 and at least one order in \(\{Q_{\sigma _1[1]},Q_{\sigma _1[2]}\}\) is completed by day 3 in the optimal schedule. By Result 5, we have

$$\begin{aligned} \sum _{i\in N_1\bigcup \Delta _3\bigcup N_2}Q_i<c,~~\sum _{i\in N_1\bigcup \Delta _3\bigcup N_2}Q_i+Q_{\sigma _1[1]}+Q_{\sigma _1[2]}<3c \end{aligned}$$

and

$$\begin{aligned} \sum _{i\in N_1\bigcup \Delta _3\bigcup N_2}Q_i+max\{Q_{\sigma _1[1]},Q_{\sigma _1[2]}\}<2c. \end{aligned}$$

If \(\sigma _1[1]\) is processed before \(\sigma _1[2]\) in the optimal schedule, we have

$$\begin{aligned} f(\pi _{16})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}, \end{aligned}$$

and if \(\sigma _1[2]\) is processed before \(\sigma _1[1]\) in the optimal schedule, we have

$$\begin{aligned} f(\pi _{15})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}. \end{aligned}$$

Therefore,

$$\begin{aligned} f(\sigma _4^{P4})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}. \end{aligned}$$

Case (4.2) If no order in \(\Delta _3\) is finished production on day 1 and at least one order in \(\Delta _3\) is finished production on day 2 in the optimal schedule, by the same analysis as that for case (4.1), we can see that at least one order of \(\{Q_{\sigma _1[1]},Q_{\sigma _1[2]}\}\) is finished production on day 3 in the optimal schedule. By the same analysis as that for case (4.1), if \(\sigma _1[1]\) is processed before \(\sigma _1[2]\) in the optimal schedule, then

$$\begin{aligned} f(\pi _{12})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}, \end{aligned}$$

and if \(\sigma _1[2]\) is processed before \(\sigma _1[1]\) in the optimal schedule, then

$$\begin{aligned} f(\pi _{14})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}. \end{aligned}$$

Therefore,

$$\begin{aligned} f(\sigma _4^{P4})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}. \end{aligned}$$

Case (4.3) If the orders in \(\Delta _3\) are finished production after day 2, by the same analysis as that for case (4.1), if \(\sigma _1[1]\) is processed before \(\sigma _1[2]\) in the optimal schedule,

$$\begin{aligned} f(\pi _{11})-f^*<\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}, \end{aligned}$$

and if \(\sigma _1[2]\) is processed before \(\sigma _1[1]\) in the optimal schedule,

$$\begin{aligned} f(\pi _{13})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}. \end{aligned}$$

Therefore,

$$\begin{aligned} f(\sigma _4^{P4})-f^*<a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i+2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}. \end{aligned}$$

Note that

$$\begin{aligned} f(\sigma _0)>a\left( 3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x\right) , \end{aligned}$$

then

$$\begin{aligned}&2f(\sigma _0)-3(f(\sigma _4^{P4})-f^*)\\&\quad >2a \left( 3\sum _{i\in N_1}Q_i+2\sum _{i\in N_2}Q_i+\sum _{i\in N_3}Q_i+\sum _{i\in N_4}Q_i+3c+3\Delta x\right) \\&\qquad -\,3\left[ a\sum _{i\in N_2}Q_i+2a\sum _{i\in N_3}Q_i\right. \\&\qquad +\left. 2a\sum _{i\in N_4\bigcup N_6}Q_i+3aQ_{\sigma _1[3]}\right] \\&\quad =6ac+6a\Delta x+aN_2-4a\sum _{i\in N_3\bigcup N_4}Q_i-6a\sum _{i\in N_6}Q_i-9aQ_{\sigma _1[3]}\\&\quad >6ac+9aP_{3r}^{\sigma _1}-9aQ_{\sigma _1[3]}-4a\sum _{i\in N_3\bigcup N_4}Q_i-3a\Delta x\\&\quad >6ac-9aP_{3l}^{\sigma _1}-3a\Delta x-4a\sum _{i\in N_3\bigcup N_4}Q_i\\&\quad >\frac{3}{2}ac-4a\sum _{i\in N_3\bigcup N_4}Q_i-3a\Delta x. \end{aligned}$$

By Result 4 and condition (3), we have \(\sum _{i\in E}Q_i+\Delta x<\frac{3c}{10}\) and

$$\begin{aligned} 2f^*-3(f(\sigma _4^{P4})-f^*)>\frac{3}{2}ac-4a\sum _{i\in N_3\bigcup N_4}Q_i-3a\Delta x>\frac{3}{2}ac-\frac{6}{5}ac>0. \end{aligned}$$

Therefore, if the output schedule is \(\sigma _4^{P4}\), then \(\frac{f(\sigma _4^{P4})}{f^*}\le \frac{5}{3}\). \(\square \)

Theorem 3.4. If the output schedule of heuristic \(\mathbf {H}\) is obtained from step 4, then \(\frac{f(\sigma ^{\mathbf {H}})}{f^*}\le 5/3\).

Proof

This is a direct conclusion from Lemmas 7.1 through 7.4. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W. An improved algorithm for integrated production and distribution scheduling problem with committed delivery dates. Optim Lett 9, 537–567 (2015). https://doi.org/10.1007/s11590-014-0755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0755-5

Keywords

Navigation