[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Identification of ISL Alphabets Using Discrete Orthogonal Moments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, discrete orthogonal moment-based shape features up to 5th order are proposed for Indian sign language (ISL) recognition system. The shape recognition capability of discrete orthogonal moment-based local features is verified on two databases. These include the standard Jochen-Triesch’s database and 26 ISL alphabets. The ISL alphabets are collected on both uniform and complex backgrounds, with variations in position, scale and rotation. The feature-set is increased for 26 ISL alphabets by varying Region of Interest (ROI) and extracting features from each ROI. A minimum possible feature-set with least redundancy is selected that gives the best recognition accuracy. The effect of order and feature dimensionality for different classifiers is studied. Results show that both Dual-Hahn and Krawtchouk moments are found to exhibit user, scale, rotation and translation invariance. Moreover, they have shape identification capability, thus achieving good recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2), 179–187.

    Article  MATH  Google Scholar 

  2. Teague, M. R. (1980). Image analysis via the general theory of moments. Journal of Optical Society of America, 70(8), 920–930.

    Article  MathSciNet  Google Scholar 

  3. Liao, S. X., & Pawlak, M. (1998). On the accuracy of Zernike moments for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12), 1358–1364.

    Article  Google Scholar 

  4. Mukundan, R., & Lee, P. A. (2001). Image analysis by Tchebichef moments. IEEE Transactions on Image Processing, 10(9), 1357–1364.

    Article  MathSciNet  MATH  Google Scholar 

  5. Pryzva, G. Y. (1992). Kravchuk orthogonal polynomials. Ukrainian Mathematical Journal, 44(7), 792–800.

    Article  MathSciNet  MATH  Google Scholar 

  6. Yap, P. T., Raveendran, P., & Ong, S. H. (2003). Image analysis by Krawtchouk moments. IEEE Transactions on Image Processing, 12(11), 1367–1377.

    Article  MathSciNet  Google Scholar 

  7. Yap, P. T., Raveendran, P., & Ong, S. H. (2007). Image analysis using Hahn moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2057–2062.

    Article  Google Scholar 

  8. Zhu, H., Liu, M., Shu, H., Zhang, H., & Luo, L. (2010). General form for obtaining discrete orthogonal moments. IET Image Processing, 4(5), 335–352.

    Article  MathSciNet  Google Scholar 

  9. Yap, P. T., Raveendran, P. & Ong, S. H. (2002). Krawtchouk moments as a new set of discrete orthogonal moments for image reconstruction. In International Joint conference on Neural Network, pp. 908–912.

  10. Potocnik, B. (2006). Assessment of region-based moment invariants for object recognition. In IEEE International Symposium on Multimedia Signal Processing and Communications, pp. 27–32.

  11. Sit, A., & Kihara, D. (2014). Comparison of image patches using local moment invariants. IEEE Transactions on Image Processing, 23(5), 2369–2379.

    Article  MathSciNet  Google Scholar 

  12. Wang, X., Xie, B. & Yang, Y. (2006). Combining Krawtchouk moments and HMMs for offline handwritten chinese character recognition. In 3rd International IEEE Conference on Intelligent Systems, pp. 661–665.

  13. Hmimid, A., Sayyouri, M., & Qjidaa, H. (2015). Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recognition, 48(2), 509–521.

    Article  Google Scholar 

  14. Zhao, S., Yao, H., Zhang, Y., Wang, Y., & Liu, S. (2015). View-based 3D object retrieval via multi-modal graph learning. Signal Processing, 112, 110–118.

    Article  Google Scholar 

  15. Nor’aini, A. J., Raveendran, P. & Selvanathan, N. (2005). A Comparative analysis of feature extraction methods for face recognition system. In Proceedings of Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research, pp. 176–181.

  16. Nor’aini, A. J., & Raveendran, P. (2009). Improving face recognition using combination of global and local features. In Proceedings of the 6th International Symposium on Mechatronics and its Applications, pp. 1–6.

  17. Noraini, A. J. (2010). A comparative analysis of face recognition using discrete orthogonal moments. In International Conference on Information Sciences, Signal Processing and their Applications, pp. 197–200.

  18. Rahman, S. M. Mahbubur, Howlader, T., & Hatzinakos, D. (2016). On the selection of 2D Krawtchouk moments for face recognition. Pattern Recognition, 54(2016), 83–93.

    Article  Google Scholar 

  19. Rani, J. S., & Devaraj, D. (2012). Face recognition using Krawtchouk moment. Sadhana-Academy Proceedings in Engineering Sciences, 37(4), 441–460.

    MathSciNet  MATH  Google Scholar 

  20. Shekar, B. H., & Rajesh, D. S. (2015). Affine normalized Krawtchouk moments based face recognition. Procedia Computer Science, 58, 66–75.

    Article  Google Scholar 

  21. Priyal, S. P. & Bora, P. K. (2010). A study on static hand gesture recognition using moments. In IEEE International Conference on Signal Processing and Communications, pp. 1–5.

  22. Priyal, S. P., & Bora, P. K. (2013). A robust static hand gesture recognition system using geometry based normalizations and Krawtchouk moments. Pattern Recognition Letters, 46(8), 2202–2219.

    Article  MATH  Google Scholar 

  23. Jassim, W. A., Raveendran, P., & Mukundan, R. (2012). New orthogonal polynomials for speech signal and image processing. IET Signal Processing, 6(8), 713–723.

    Article  MathSciNet  Google Scholar 

  24. Tsougenis, E. D., Papakostas, G. A., Koulouriotis, D. E., & Tourassis, V. D. (2012). Performance evaluation of moment-based watermarking methods: A review. Journal of Systems and Software, 85(8), 1864–1884.

    Article  Google Scholar 

  25. Dai, X. B., Shu, H. Z., Luo, L. M., Han, G. N., & Coatrieux, J. L. (2010). Reconstruction of tomographic images from limited range projections using discrete Radon transform and Tchebichef moments. Pattern Recognition, 43(3), 1152–1164.

    Article  MATH  Google Scholar 

  26. Zhu, H., Shu, H., Zhou, J., Luo, L., & Coatrieux, J. L. (2007). Image analysis by discrete orthogonal dual Hahn moments. Pattern Recognition Letters, 28, 1688–1704.

    Article  Google Scholar 

  27. Nikiforov, A. F., & Uvarov, V. B. (1988). Special functions of mathematical physics. Basel: Birkhauser.

    Book  MATH  Google Scholar 

  28. Triesch, J., & Von der malsuburg, C. (2002). Classification of hand postures against complex backgrounds using elastic graph matching. Image and Vision Computing, 20(13–14), 937–943.

    Article  Google Scholar 

  29. Chapaneri, S., Lopes, R., & Jayaswal, D. (2015). Evaluation of music features for PUK kernel based genre classification. Procedia Computer Science, 45, 186–196.

    Article  Google Scholar 

  30. Wald, R., Khoshgoftaar, T. M. & Napolitano, A. (2014). Using correlation-based feature selection for a diverse collection of bioinformatics datasets. In IEEE International Conference on Bioinformatics and Bioengineering, pp. 156–162.

  31. Xu, X., Li, A., & Wang, M. (2015). Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine. IET Systems Biology, 9(4), 155–163.

    Article  Google Scholar 

  32. Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.

    Article  Google Scholar 

  33. Üstün, B., Melssen, W. J., & Buydens, L. M. C. (2006). Facilitating the application of support vector regression by using a universal Pearson VII function based kernel. Chemometrics and Intelligent Laboratory Systems, 81(1), 29–40.

    Article  Google Scholar 

  34. Zhang, G., & Ge, H. (2013). Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins. Computational Biology and Chemistry, 46, 16–22.

    Article  Google Scholar 

  35. Huang, G. B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 42(2), 513–529.

    Article  Google Scholar 

  36. Dinç, İ., Sigdel, M., Dinç, S., Sigdel, M. S., Pusey, M. L. & Aygün, R. S. (2014). Evaluation of normalization and PCA on the performance of classifiers for protein crystallization images. In IEEE SOUTHEASTCON, pp. 1–6.

  37. Shalabi, L. A., Shaaban, Z., & Kasasbeh, B. (2006). Data mining: A preprocessing engine. Journal of Computer Science, 2(9), 735–739.

    Article  Google Scholar 

  38. Just, A., Rodriguez, Y. & Marcel, S. (2006). Hand posture classification and recognition using the modified census transform. In 7th International Conference on Automatic Face and Gesture Recognition, pp. 351–356.

  39. Kelly, D., McDonald, J., & Markham, C. (2010). A person independent system for recognition of hand postures used in sign language. Pattern Recognition Letters, 31(11), 1359–1368.

    Article  Google Scholar 

  40. Dahmani, D., & Larabi, S. (2014). user independent system for sign language finger spelling recognition. Journal of Visual Communication and Image Representation, 25(5), 1240–1250.

    Article  Google Scholar 

  41. Kaur, B., & Joshi, G. (2016). Lower order Krawtchouk moment-based feature-set for hand gesture recognition. Advances in Human–Computer Interaction, 2016(2016), 1–10.

    Google Scholar 

  42. Khurana, G., Joshi, G. & Vig, R. (2014). Static hand gestures recognition system using shape based features. Recent Advances in Engineering and Computational Sciences, pp. 1–4.

  43. Sharma, K., Joshi, G & Dutta, M. (2015). Analysis of shape and orientation recognition capability of complex Zernike moments for signed gestures. In International Conference on Signal Processing and Integrated Networks, pp. 730–735.

  44. Joshi, G., Vig, R. & Singh, S. (2017). CFS-Infogain based combined shape based feature vector for signer independent ISL database. In 6th International Conference on Pattern Recognition Applications and Methods, 24th–26th February, 2017, Portu, pp. 1–8 (accepted).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bineet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Joshi, G. & Vig, R. Identification of ISL Alphabets Using Discrete Orthogonal Moments. Wireless Pers Commun 95, 4823–4845 (2017). https://doi.org/10.1007/s11277-017-4126-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4126-2

Keywords