Appendix A: Solving Formula (23)
We use symbols as following: \(\mu _1 = \frac{\theta _p}{\alpha _1 - \theta _p \times (1- \alpha _1)}\), \(\mu _2 = \frac{\theta _p}{2\alpha _1 - \theta _p \times (1- \alpha _1)}\), \(\mu _3 = \theta _p-\frac{\alpha _1}{(1- \alpha _1)}\), \(\mu _4 = \frac{\theta _p}{\alpha _2 - \theta _p \times (1- \alpha _2)}\), \(\mu _5 = \frac{\theta _p}{2\alpha _2 - \theta _p \times (1- \alpha _2)}\), \(\mu _6 = \theta _p-\frac{\alpha _2}{(1- \alpha _2)}\).
It is easy to find that
$$\begin{aligned} {P_{12}} = {P_{13}} = {P_{14}} = {P_{21}} = {P_{22}} = {P_{24}} = {P_{31}} = {P_{33}} = {P_{41}} = {P_{42}} = 0 \end{aligned}$$
(39)
1. Derivation
\(P_{11}\)
$$\begin{aligned} {P_{11}}&= \Pr (\max (I_1^1,I_2^1) < {R_p},{\gamma _{11}} < {\theta _p},\gamma {}_{12} < {\theta _p})\nonumber \\&= \Pr ({\gamma _{11}} < {\theta _p})\times \Pr (\gamma {}_{12} < {\theta _p})\, = (1 - {e^{ - {\lambda _{11}}{\theta _p}}})\times (1 - {e^{ - {\lambda _{12}}{\theta _p}}}) \end{aligned}$$
(40)
2. Derivation
\(P_{23}\)
$$\begin{aligned} {P_{23}}&= \Pr \left\{ {\max (I_1^2,I_2^3) < {R_p},\,\,\gamma {}_{12} + \frac{{{\alpha _1} \times {\gamma _5}}}{{(1 - {\alpha _1}) \times {\gamma _5} + 1}} < {\theta _p},{\gamma _{12}} < {\theta _p},{\gamma _{11}} > {\theta _p}} \right\} \nonumber \\&= \underbrace{\Pr \left( \frac{{{\alpha _1} \times {\gamma _{21}}}}{{(1 - {\alpha _1}) \times {\gamma _{21}} + 1}} < {\theta _p}\right) }_{{P_{23a}}} \times \underbrace{\Pr ({\gamma _{11}} > {\theta _p})}_{{P_{23b}}}\nonumber \\&\times \underbrace{\Pr \left( {\gamma _{12}} < {\theta _p},\gamma {}_{12} + \frac{{{\alpha _1} \times {\gamma _5}}}{{(1 - {\alpha _1}) \times {\gamma _5} + 1}} < {\theta _p}\right) }_{{P_{23c}}}\, \end{aligned}$$
(41)
-
In the case where \({\alpha _1} = 1\) (\({\textit{ST}}_1\) does not send signals), \(P_{23}\) is given as:
$$\begin{aligned} {P_{23}} = \Pr ({\gamma _{21}} < {\theta _p}) \times \Pr ({\gamma _{11}} > {\theta _p}) \times \Pr ({\gamma _{12}} < {\theta _p},\gamma {}_{12} + {\gamma _5} < {\theta _p}) \end{aligned}$$
(42)
where
$$\begin{aligned} \Pr ({\gamma _{12}} \!<\! {\theta _p},\gamma {}_{12} \!+\! {\gamma _5} \!<\! {\theta _p})&= \int \limits _{x = 0}^{{\theta _p}} {\int \limits _{z =0}^{{\theta _p} \!-\! x} {{f_{{\gamma _5}}}(z) \!\times \! {f_{{\gamma _{12}}}}(x)dzdx}}\nonumber \\&= 1 \!-\! {e^{ \!-\! {\lambda _{12}}{\theta _p}}} \!+\! \frac{{{\lambda _{12}}}}{{{\lambda _5} \!-\! {\lambda _{12}}}} \!\times \! ({e^{ \!-\! {\lambda _5}{\theta _p}}} \!-\! {e^{ \!-\! {\lambda _{12}}{\theta _p}}}) \end{aligned}$$
(43)
Thus, in this case:
$$\begin{aligned} {P_{23}} = \left( {1 - {e^{ - {\lambda _{21}}{\theta _p}}}} \right) \times {e^{ - {\lambda _{11}}{\theta _p}}} \times \left\{ {1 - {e^{ - {\lambda _{12}}{\theta _p}}} + \frac{{{\lambda _{12}}}}{{{\lambda _5} - {\lambda _{12}}}} \times ({e^{ - {\lambda _5}{\theta _p}}} - {e^{ - {\lambda _{12}}{\theta _p}}})} \right\} \nonumber \\ \end{aligned}$$
(44)
-
When \({\alpha _1} < 1\):
$$\begin{aligned} {P_{23a}} = \left\{ \begin{array}{l@{\quad }l} 1- e^{-\lambda _{21} \mu _1}, &{} \theta _p < \alpha _1/(1-\alpha _1)\\ 1, &{} \theta _p \ge \alpha _1/(1-\alpha _1)\\ \end{array} \right. \end{aligned}$$
(45)
Following [11], Eqs. (25) and (29)], we have:
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} P_{23c}^{{\textit{LB}}} \!=\! \left( 1 \!-\! e^{\!-\! \lambda _{12}\frac{\theta _p}{2}}\right) (1\!-\!e^{\!-\!\lambda _5 \mu _2}) \!\le \! {P_{23c}} \!\le \! P_{23c}^{{\textit{UB}}} \!=\! (1\!-\!e^{\!-\! \lambda _{12} \theta _p}) (1\!-\!e^{\!-\!\lambda _5 \mu _1}), &{} \theta _p \!<\! \frac{\alpha _1}{1\!-\!\alpha _1}\\ P_{23c}^{{\textit{LB}}} \!=\! (1\!-\!e^{-\lambda _{12} \mu _3}) \!\le \! \mathrm{P}_{23c} \!\le \! P_{23c}^{{\textit{UB}}} \!=\! (1 \!-\!e^{\!-\!\lambda _{12} \theta _p}), &{} \theta _p \ge \frac{\alpha _1}{1\!-\!\alpha _1} \end{array}\right. \end{aligned}$$
(46)
Therefore, from (41), (45) and (46), we have:
$$\begin{aligned} P_{23}^{{\textit{LB}}} \le {P_{23}} \le P_{23}^{UP} \end{aligned}$$
(47)
where
$$\begin{aligned} P_{23}^{{\textit{LB}}}&\!=\!&\left\{ \begin{array}{l@{\quad }l} (1\!-\!e^{\!-\!\lambda _{21} \mu _1}) \!\times \! e^{\!-\!\lambda _{11} \theta _p} \!\times \! \left( 1\!-\!e^{\!-\!\lambda _{12}\frac{\theta _p}{2}}\right) \times (1\!-\!e^{\!-\!\lambda _5 \mu _2}),&{} \theta _p < \alpha _1/1\!-\!\alpha _1\\ e^{-\lambda _{11} \theta _p} \times (1\!-\!e^{-\lambda _{12} \mu _3}), &{}\theta _p \!\ge \! \alpha _1/1\!-\!\alpha _1\\ \end{array}\right. \end{aligned}$$
(48)
$$\begin{aligned} \quad P_{23}^{{\textit{UB}}}&\!=\!&\left\{ \begin{array}{l@{\quad }l} ({1\!-\!e^{-\lambda _{21} \mu _1}}) \!\times \! e^{-\lambda _{11} \theta _p} \!\times \! (1\!-\!e^{-\lambda _{12} \theta _p}) \!\times \! (1\!-\!e^{-\lambda _5 \mu _1}),&{}\theta _p < \alpha _1/1\!-\!\alpha _1\\ e^{-\lambda _{11} \theta _p} \times (1\!-\!e^{-\lambda _{12} \theta _p}), &{}\theta _p \!\ge \! \alpha _1/1-\alpha _1\\ \end{array}\right. \end{aligned}$$
(49)
3. Derivation
\(P_{32}\) Similar to \(P_{23}\), we receive the results as:
$$\begin{aligned} {P_{32}}&= \underbrace{\Pr \left( \frac{{{\alpha _2}{\gamma _{22}}}}{{(1 \!-\! {\alpha _2}){\gamma _{22}} \!+\! 1}} \!<\! {\theta _p}\right) }_{{P_{32a}}}\!\times \! \underbrace{\Pr ({\gamma _{12}} \!>\! {\theta _p})}_{{P_{32b}}}\!\times \! \underbrace{\Pr \left( {\gamma _{11}} < {\theta _p},\gamma {}_{11} \!+\! \frac{{{\alpha _2}{\gamma _5}}}{{(1 \!-\! {\alpha _2}){\gamma _5} \!+\! 1}} \!<\! {\theta _p}\right) }_{{P_{32c}}}\nonumber \\&= \left\{ \begin{array}{l@{\quad }l} (1-e^{-\lambda _{22} \theta _p}) \times e^{-\lambda _{12} \theta _p} \times \left\{ 1-e^{-\lambda _{11} \theta _p} + \frac{\lambda _{11}}{{\lambda _5}-{\lambda _{11}}} (e^{-\lambda _5 \theta _p} - {e^{-\lambda _{11} \theta _p}})\right\} ,&{}\alpha _2 = 1\\ P_{32}^{{\textit{LB}}} \le {P_{32}} \le P_{32}^{{\textit{UB}}}, &{} \alpha _2 < 1 \end{array}\right. \nonumber \\ \end{aligned}$$
(50)
The lower and upper bounds of \(P_{32c}\) is given as:
$$\begin{aligned} \left\{ \begin{array}{ll} P_{32c}^{{\textit{LB}}} \!=\! \left( 1\!-\!e^{\frac{\!-\!\lambda _{11}\theta _p}{2}}\right) (1\!-\!e^{\!-\!\lambda _5 \mu _5}) \!\le \! P_{32c} \!\le \! P_{32c}^{{\textit{UB}}} \!=\! (1\!-\! e^{-\lambda _{11} \theta _p}) (1\!-\!e^{\!-\!\lambda _5 \mu _4}), &{}\theta _p < \frac{\alpha _2}{1\!-\!\alpha _2}\\ P_{32c}^{{\textit{LB}}} \!=\! (1\!-\!e^{-\lambda _{11} \mu _6}) \!\le \! \mathrm{P}_{32c} \!\le \! P_{32c}^{{\textit{UB}}} = (1\!-\!e^{-\lambda _{11} \theta _p}),&{} \theta _p \!\ge \! \frac{\alpha _2}{1\!-\!\alpha _2} \end{array} \right. \nonumber \\ \end{aligned}$$
(51)
Hence, from (50) and (51), the lower and upper bounds of \(P_{32}\) as:
$$\begin{aligned} P_{32}^{{\textit{LB}}}&= \left\{ \begin{array}{ll} (1-e^{-\lambda _{22} \mu _4}) \times e^{-\lambda _{12} \theta _p} \times \left( 1-e^{-\lambda _{11}\frac{\theta _p}{2}}\right) \times (1-e^{-\lambda _5 \mu _5}), &{} \theta _p < \alpha _2/(1-\alpha _2)\\ e^{-\lambda _{12} \theta _p} \times (1-e^{-\lambda _{11}\mu _6}), &{}\theta _p \ge \alpha _2/(1-\alpha _2) \end{array}\right. \nonumber \\\end{aligned}$$
(52)
$$\begin{aligned} P_{32}^{{\textit{UB}}}&= \left\{ \begin{array}{ll} (1-e^{-\lambda _{22} \mu _4}) \times e^{-\lambda _{12} \theta _p} \times (1-e^{-\lambda _{11}\theta _p}) \times (1-e^{-\lambda _5 \mu _4}), &{} \theta _p < \alpha _2/(1-\alpha _2)\\ e^{-\lambda _{12} \theta _p} \times (1-e^{-\lambda _{11}\theta _p}), &{}\theta _p \ge \alpha _2/(1-\alpha _2) \end{array}\right. \nonumber \\ \end{aligned}$$
(53)
4. Derivation
\(P_{34}\)
$$\begin{aligned} P_{34}&= \underbrace{\Pr \left( \frac{{{\alpha _1} \times {\gamma _{21}}}}{{(1 - {\alpha _1}) \times {\gamma _{21}} + 1}} + \frac{{{\alpha _2} \times {\gamma _{22}}}}{{(1 - {\alpha _2}) \times {\gamma _{22}} + 1}} < {\theta _p}\right) }_{{P_{34a}}}\nonumber \\&\times \underbrace{\Pr ({\gamma _{12}} > {\theta _p})}_{{P_{34b}}} \times \underbrace{\Pr ({\gamma _{11}} < {\theta _p},\gamma {}_{11} + \frac{{{\alpha _2} \times {\gamma _5}}}{{(1 - {\alpha _2}) \times {\gamma _5} + 1}} > {\theta _p})}_{{P_{34c}}} \end{aligned}$$
(54)
From (54), (55) and (56), we have the result:
$$\begin{aligned} P_{34} = \left\{ {1 - {e^{ - {\lambda _{21}}{\theta _p}}} + \frac{{{\lambda _{21}} \times ({e^{ - {\lambda _{22}}{\theta _p}}} - {e^{ - {\lambda _{21}}{\theta _p}}})}}{{{\lambda _{22}} - {\lambda _{21}}}}} \right\} \times \frac{{{e^{ - {\lambda _{12}}{\theta _p}}} \times {\lambda _{11}} \times ({e^{ - {\lambda _5}{\theta _p}}} - {e^{ - {\lambda _{11}}{\theta _p}}})}}{{{\lambda _{11}} - {\lambda _5}}}\nonumber \\ \end{aligned}$$
(57)
\(P_{34a}\) is solved in the same way with \(P_{23c}\) in (46), the lower and upper bounds of \(P_{34a}\) are obtained as:
$$\begin{aligned} \left\{ \begin{array}{ll} P_{34a}^{{\textit{LB}}} \!=\! \left( 1\!-\!e^{\frac{\!-\!\lambda _{22}{\theta _p}}{2}}\right) (1\!-\!e^{\!-\!\lambda _{21} \mu _2}) \le {P_{34a}} \le P_{34a}^{{\textit{UB}}} = (1\!-\!e^{\!-\!\lambda _{22} \theta _p}) (1\!-\!e^{-\lambda _{21} \mu _1}), &{} {\theta _p} < \frac{\alpha _1}{1 \!-\! {\alpha _1}}\\ P_{34a}^{{\textit{LB}}} \!=\! (1\!-\!e^{-\lambda _{22} \mu _3}) \!\le \! \mathrm{P}_{34a} \!\le \! P_{34a}^{{\textit{UB}}} \!=\! (1\!-\!e^{-\lambda _{22} \theta _p}),&{} \theta _p \!\ge \! \frac{\alpha _1}{1\!-\!{\alpha _1}} \end{array} \right. \end{aligned}$$
(58)
Then, from (54), (56) and (58), the lower and upper bounds of \(P_{34}\) are given as:
$$\begin{aligned} P_{34}^{{\textit{LB}}}&= \left\{ \begin{array}{ll} \frac{\lambda _{11}}{\lambda _{11}-\lambda _5}\left( 1-e^{\frac{-\lambda _{22} \theta _p}{2}}\right) (1-e^{-\lambda _{21} \mu _2}) e^{-\lambda _{12} \theta _p}(e^{-\lambda _5 \theta _p}- e^{-\lambda _{11} \theta _p}),&{} \theta _p < \frac{\alpha _1}{1-\alpha _1}\\ \frac{\lambda _{11}}{\lambda _{11}-\lambda _5}(1-e^{-\lambda _{22} \mu _3}) e^{-\lambda _{12} \theta _p}(e^{-\lambda _5 \theta _p}-e^{-\lambda _{11} \theta _p}),&{} \theta _p \ge \frac{\alpha _1}{1-\alpha _1} \end{array} \right. \nonumber \\ \end{aligned}$$
(59)
$$\begin{aligned} P_{34}^{{\textit{UB}}}&= \left\{ \begin{array}{ll} \frac{\lambda _{11}}{\lambda _{11}-\lambda _5} (1-e^{-\lambda _{22} \theta _p}) (1-e^{-\lambda _{21} \mu _1}) e^{-\lambda _{12} \theta _p}(e^{-\lambda _5 \theta _p}- e^{-\lambda _{11} \theta _p}),&{} \theta _p < \frac{\alpha _1}{1-\alpha _1}\\ \frac{\lambda _{11}}{\lambda _{11}-\lambda _5}(1-e^{-\lambda _{22} \theta _p}) e^{-\lambda _{12} \theta _p}(e^{-\lambda _5 \theta _p}-e^{-\lambda _{11} \theta _p}),&{} \theta _p \ge \frac{\alpha _1}{1-\alpha _1} \end{array} \right. \nonumber \\ \end{aligned}$$
(60)
-
When \({\alpha _1} < 1 \mathrm { and }\,\alpha _2 < 1\), we use the upper and lower bounds for \(P_{34}\), yielding
$$\begin{aligned} \max \left\{ \begin{array}{l} \frac{\alpha _1 \gamma _{21}}{(1-{\alpha _1}) \gamma _{21}+1},\\ \frac{\alpha _2 \gamma _{22}}{(1 - {\alpha _2}) \gamma _{22}+1} \end{array} \right\}&\le \left\{ \frac{\alpha _1 \gamma _{21}}{(1-\alpha _1) \gamma _{21}+1} +\frac{\alpha _2 \gamma _{22}}{(1- \alpha _2) \gamma _{22}+1}\right\} \nonumber \\&\le 2\max \left\{ \begin{array}{l} \frac{\alpha _1 \gamma _{21}}{(1-\alpha _1) \gamma _{21}+1},\\ \frac{\alpha _2 \gamma _{22}}{(1-{\alpha _2}) \gamma _{22}+1} \end{array} \right\} \end{aligned}$$
(61)
Then, lower and upper bounds of \(P_{34a}\) are obtained as:
$$\begin{aligned} P_{34a}^{{\textit{LB}}}&= \Pr \left[ 2\max \left( \frac{{{\alpha _1} \times {\gamma _{21}}}}{{(1 - {\alpha _1}) \times {\gamma _{21}} + 1}},\frac{{{\alpha _2} \times {\gamma _{22}}}}{{(1 - {\alpha _2}) \times {\gamma _{22}} + 1}}\right) \, < {\theta _p}\right] \nonumber \\&= \Pr \left( 2\frac{{{\alpha _1} \times {\gamma _{21}}}}{{(1 - {\alpha _1}) \times {\gamma _{21}} + 1}} < {\theta _p}\right) \times \Pr \left( 2\frac{{{\alpha _2} \times {\gamma _{22}}}}{{(1 - {\alpha _2}) \times {\gamma _{22}} + 1}} < {\theta _p}\right) \end{aligned}$$
(62)
$$\begin{aligned} P_{34a}^{{\textit{UB}}}&= \Pr \left[ \max \left( \frac{{{\alpha _1} \times {\gamma _{21}}}}{{(1 - {\alpha _1}) \times {\gamma _{21}} + 1}},\frac{{{\alpha _2} \times {\gamma _{22}}}}{{(1 - {\alpha _2}) \times {\gamma _{22}} + 1}}\right) < {\theta _p}\right] \nonumber \\&= \Pr \left( \frac{{{\alpha _1} \times {\gamma _{21}}}}{{(1 - {\alpha _1}) \times {\gamma _{21}} + 1}} < {\theta _p}\right) \times \Pr \left( \frac{{{\alpha _2} \times {\gamma _{22}}}}{{(1 - {\alpha _2}) \times {\gamma _{22}} + 1}} < {\theta _p}\right) \end{aligned}$$
(63)
Similar to (45), we have:
When \({\alpha _1} > {\alpha _2}\):
$$\begin{aligned} P_{34a}^{{\textit{LB}}}&= \left\{ \begin{array}{l@{\quad }l} (1-e^{-\lambda _{21}\mu _2})\times (1-e^{-\lambda _{22}\mu _5}),&{} \theta _p < 2\alpha _2/(1-\alpha _2)\\ (1-e^{-\lambda _{21}\mu _2}),&{}2\alpha _2/(1-\alpha _2)\le \theta _p<2\alpha _1/(1-\alpha _1)\\ 1,&{}\theta _p \ge 2\alpha _1/(1-\alpha _1)\\ \end{array}\right. \nonumber \\ P_{34a}^{{\textit{UB}}}&= \left\{ \begin{array}{l@{\quad }l} (1-e^{-\lambda _{21} \mu _1})\times (1-e^{-\lambda _{22} \mu _4}), &{}\theta _p < \alpha _2/(1-\alpha _2)\\ (1-e^{-\lambda _{21} \mu _1}),&{} \alpha _2/(1-\alpha _2)\le \theta _p < \alpha _1/(1-\alpha _1)\\ 1,&{}\theta _p \ge \alpha _1/(1-\alpha _1)\\ \end{array}\right. \end{aligned}$$
(64)
When \({\alpha _1} \le {\alpha _2}\):
$$\begin{aligned} P_{34a}^{{\textit{LB}}}&= \left\{ \begin{array}{l@{\quad }l} (1-e^{-\lambda _{21}\mu _2})\times (1-e^{-\lambda _{22}\mu _5}),&{} \theta _p < 2\alpha _1/(1-\alpha _1)\\ (1-e^{-\lambda _{22}\mu _5}),&{}2\alpha _1/(1-\alpha _1)\le \theta _p<2\alpha _2/(1-\alpha _2)\\ 1,&{}\theta _p \ge 2\alpha _2/(1-\alpha _2)\\ \end{array}\right. \nonumber \\ P_{34a}^{{\textit{UB}}}&= \left\{ \begin{array}{l@{\quad }l} (1-e^{-\lambda _{21} \mu _1})\times (1-e^{-\lambda _{22} \mu _4}), &{}\theta _p < \alpha _1/(1-\alpha _1)\\ (1-e^{-\lambda _{22} \mu _4}),&{} \alpha _1/(1-\alpha _1)\le \theta _p < \alpha _2/(1-\alpha _2)\\ 1,&{}\theta _p \ge \alpha _2/(1-\alpha _2)\\ \end{array}\right. \end{aligned}$$
(65)
In addition:
$$\begin{aligned} {P_{34c}}&= \Pr ({\gamma _{11}} < {\theta _p}) - \Pr ({\gamma _{11}} < {\theta _p},\gamma {}_{11} + \frac{{{\alpha _2} \times {\gamma _5}}}{{(1 - {\alpha _2}) \times {\gamma _5} + 1}} < {\theta _p})\nonumber \\&= \left( {1 - {e^{ - {\lambda _{11}}{\theta _p}}}} \right) - {P_{32c}} \end{aligned}$$
(66)
Using the results of (51) with the same condition, the upper and lower bounds of \(P_{34c}\) are given as:
$$\begin{aligned} P_{34c}^{{\textit{LB}}} = \left( {1 - {e^{ - {\lambda _{11}}{\theta _p}}}} \right) - P_{32c}^{{\textit{UB}}} \le {P_{34c}} \le P_{34c}^{{\textit{UB}}} = \left( {1 - {e^{ - {\lambda _{11}}{\theta _p}}}} \right) - P_{32c}^{{\textit{LB}}} \end{aligned}$$
(67)
From (54), (64), (65) and (67), we have the bounds:
$$\begin{aligned} P_{34}^{{\textit{LB}}} = {e^{ - {\lambda _{12}}{\theta _p}}} \times P_{34a}^{{\textit{LB}}} \times P_{34c}^{{\textit{LB}}} \le {P_{34}} \le P_{34}^{{\textit{UB}}} = {e^{ - {\lambda _{12}}{\theta _p}}} \times P_{34a}^{{\textit{UB}}} \times P_{34c}^{{\textit{UB}}} \end{aligned}$$
(68)
5. Derivation
\(P_{43}\): Similar to \(P_{34}\), we also receive the results as:
$$\begin{aligned} {P_{43}}&= \underbrace{\Pr \left( \frac{{{\alpha _1}{\gamma _{21}}}}{{(1 - {\alpha _1}){\gamma _{21}} + 1}} + \frac{{{\alpha _2}{\gamma _{22}}}}{{(1 - {\alpha _2}){\gamma _{22}} + 1}} < {\theta _p}\right) }_{{P_{43a}}}\nonumber \\&\quad \quad \times \underbrace{\Pr ({\gamma _{11}} > {\theta _p})}_{{P_{43b}}}\underbrace{\Pr ({\gamma _{12}} < {\theta _p},\gamma {}_{12} + \frac{{{\alpha _1}{\gamma _5}}}{{(1 - {\alpha _1}){\gamma _5} + 1}} > {\theta _p})}_{{P_{43c}}}\nonumber \\&= \left\{ \begin{array}{l@{\quad }l} \frac{\lambda _{12}}{\lambda _{12}-\lambda _5}\left[ 1-e^{-\lambda _{21} \theta _p}+\frac{\lambda _{21}}{\lambda _{22}-\lambda _{21}}(e^{-\lambda _{22} \theta _p}-e^{-\lambda _{21}\theta _p})\right] \\ \quad e^{-\lambda _{11} \theta _p}(e^{-\lambda _5 \theta _p}-e^{-\lambda _{12}\theta _p}), &{}\alpha _1 = \alpha _2 = 1\\ P_{43}^{{\textit{LB}}}\le {P_{43}}\le P_{43}^{{\textit{UB}}},&{} others \end{array}\right. \end{aligned}$$
(69)
The same way as \(P_{34}\), the lower and upper bounds of \(P_{43}\) are given as:
$$\begin{aligned} P_{43}^{{\textit{LB}}}&= \left\{ \begin{array}{l@{\quad }l} \frac{\lambda _{12}}{\lambda _{12}\!-\!\lambda _5}\left( 1\!-\!e^{\frac{-\lambda _{21} \theta _p}{2}}\right) (1\!-\!e^{-\lambda _{22} \mu _2}) e^{-\lambda _{11} \theta _p}(e^{-\lambda _5 \theta _p} \!-\! e^{-\lambda _{12} \theta _p}),&{} \theta _p < \frac{\alpha _2}{1\!-\!\alpha _2}\\ \frac{\lambda _{12}}{\lambda _{12}\!-\!\lambda _5}(1\!-\!e^{-\lambda _{21} \mu _3})e^{- \lambda _{11} \theta _p}(e^{-\lambda _5 \theta _p}\!-\!e^{-\lambda _{12} \theta _p}),&{} \theta _p\!\ge \! \frac{\alpha _2}{1\!-\!\alpha _2} \end{array} \right. \qquad \end{aligned}$$
(70)
$$\begin{aligned} P_{43}^{{\textit{UB}}}&= \left\{ \begin{array}{l@{\quad }l} \frac{\lambda _{12}}{\lambda _{12}-\lambda _5}(1-e^{-\lambda _{21} \theta _p})(1-e^{-\lambda _{22} \mu _1}) e^{-\lambda _{11} \theta _p}(e^{-\lambda _5 \theta _p} - e^{-\lambda _{12} \theta _p}),&{} \theta _p < \frac{\alpha _2}{1-\alpha _2}\\ \frac{\lambda _{12}}{\lambda _{12}-\lambda _5}(1-e^{-\lambda _{21} \theta _p})e^{- \lambda _{11} \theta _p}(e^{-\lambda _5 \theta _p}-e^{-\lambda _{11} \theta _p}),&{} \theta _p\ge \frac{\alpha _2}{1-\alpha _2} \end{array} \right. \qquad \end{aligned}$$
(71)
The lower and upper bounds of \(P_{43}\) are given as:
$$\begin{aligned} P_{43}^{{\textit{LB}}} = {e^{ - {\lambda _{11}}{\theta _p}}} \times P_{34a}^{{\textit{LB}}} \times P_{43c}^{{\textit{LB}}} \le {P_{43}} \le P_{43}^{{\textit{UB}}} = {e^{ - {\lambda _{11}}{\theta _p}}} \times P_{34a}^{{\textit{UB}}} \times P_{43c}^{{\textit{UB}}} \end{aligned}$$
(73)
6. Derivation
\(P_{44}\)
$$\begin{aligned} {P_{44}}&= \Pr \left( \frac{{{\alpha _1}{\gamma _{21}}}}{{(1 - {\alpha _1}){\gamma _{21}} + 1}} + \frac{{{\alpha _2}{\gamma _{22}}}}{{(1 - {\alpha _2}){\gamma _{22}} + 1}} < {\theta _p}\right) \nonumber \\&\times \Pr \left( {\gamma _{11}} > {\theta _p},\gamma {}_{11} + \frac{{{\alpha _2}{\gamma _5}}}{{(1 - {\alpha _2}){\gamma _5} + 1}} > {\theta _p}\right) \nonumber \\&\times \Pr \left( {\gamma _{12}} > {\theta _p},\gamma {}_{12} + \frac{{{\alpha _1}{\gamma _5}}}{{(1 - {\alpha _1}){\gamma _5} + 1}} > {\theta _p}\right) \nonumber \\&= \Pr \left( \frac{{{\alpha _1}{\gamma _{21}}}}{{(1 - {\alpha _1}){\gamma _{21}} + 1}} + \frac{{{\alpha _2}{\gamma _{22}}}}{{(1 - {\alpha _2}){\gamma _{22}} + 1}} < {\theta _p}\right) \times \Pr ({\gamma _{11}} > {\theta _p})\times \Pr ({\gamma _{12}} > {\theta _p})\nonumber \\&= \left\{ \begin{array}{l@{\quad }l} \left[ 1-e^{-\lambda _{21} \theta _p}+\frac{\lambda _{21}}{\lambda _{22}-\lambda _{21}} (e^{-\lambda _{22} \theta _p}-e^{-\lambda _{21} \theta _p})\right] e^{-\lambda _{11} \theta _p} e^{-\lambda _{12} \theta _p}, &{} \alpha _1 = \alpha _2= 1\\ P_{44}^{{\textit{LB}}} = e^{-\lambda _{11} \theta _p} e^{-\lambda _{12} \theta _p} P_{34a}^{{\textit{LB}}} \le {P_{44}} \le P_{44}^{{\textit{UB}}} = e^{-\lambda _{11} \theta _p} e^{-\lambda _{12} \theta _p} P_{34a}^{{\textit{UB}}}, &{} \mathrm {others} \end{array}\right. \nonumber \\ \end{aligned}$$
(74)
where \(P_{43a}^{{\textit{LB}}},\,P_{43a}^{{\textit{UB}}}\) is calculated from (64) and (65)
Appendix B: Solving Formula (36)
Formula (36) is manipulated as:
$$\begin{aligned}&P_{{\textit{DFRSSA}}}^{{\textit{out}}}\nonumber \\&\quad = \Pr \left\{ {\min [I({\textit{PT}},{{\textit{ST}}_1}),I({{\textit{ST}}_1},{\textit{PR}})] < {R_p},\min [I({\textit{PT}},{{\textit{ST}}_2}),I({{\textit{ST}}_2},{\textit{PR}})] < {R_p}} \right\} \nonumber \\&\quad = \Pr \left\{ {\min [I({\textit{PT}},{{\textit{ST}}_1}),I({{\textit{ST}}_1},{\textit{PR}})] \!<\! {R_p}} \right\} \!\times \! \Pr \left\{ {\min [I({\textit{PT}},{{\textit{ST}}_2}),I({{\textit{ST}}_2},{\textit{PR}})] \!<\! {R_p}} \right\} \nonumber \\&\quad = \underbrace{\left\{ {1 - \Pr \left\{ {\min [I({\textit{PT}},{{\textit{ST}}_1}),I({{\textit{ST}}_1},{\textit{PR}})] > {R_p}} \right\} } \right\} }_{P_{{\textit{DFRSSAa}}}^{{\textit{out}}}}\nonumber \\&\qquad \times \underbrace{\left\{ {1 - \Pr \left\{ {\min [I({\textit{PT}},{{\textit{ST}}_2}),I({{\textit{ST}}_2},{\textit{PR}})] > {R_p}} \right\} } \right\} }_{P_{{\textit{DFRSSAb}}}^{{\textit{out}}}} \end{aligned}$$
(75)
From (14) and (15), \(P_{{\textit{DFRSSAa}}}^{{\textit{out}}}\) is calculated as:
$$\begin{aligned}&P_{{\textit{DFRSSAa}}}^{{\textit{out}}}\nonumber \\&\quad = 1 - \Pr \left[ {I({\textit{PT}},{{\textit{ST}}_1}) > {R_p}} \right] \times \Pr \left[ {I({{\textit{ST}}_1},{\textit{PR}}) > {R_p}} \right] \nonumber \\&\quad = 1 - \Pr \left[ {{{\log }_2}\left[ {1 + {\textit{SNR}}({\textit{PT}},{{\textit{ST}}_1})} \right] > {R_p}} \right] \times \Pr \left[ {{{\log }_2}\left[ {1 + {\textit{SINR}}({{\textit{ST}}_1},{\textit{PR}})} \right] > {R_p}} \right] \nonumber \\&\quad = 1 - \Pr ((3/2) \times \gamma _{11} > \theta _p) \times \Pr \left[ \frac{(3/2) \times \alpha _1 \times \gamma _{21}}{(3/2) \times (1-\alpha _1) \times \gamma _{21}+1} > \theta _p\right] \nonumber \\&\quad =\left\{ \begin{array}{l@{\quad }l} 1-e^{-2(\lambda _{11} \theta _p + \lambda _{21} \mu _1)/3},&{} \theta _p < \alpha _1/(1-\alpha _1)\\ 1,&{}\theta _p \ge \alpha _1/(1-\alpha _1) \end{array}\right. \end{aligned}$$
(76)
Similar as (76), we obtain as
$$\begin{aligned} P_{{\textit{DFRSSAb}}}^{{\textit{out}}} = \left\{ \begin{array}{l@{\quad }l} 1-e^{-2(\lambda _{12} \theta _p + \lambda _{22} \mu _4)/3},&{} \theta _p < \alpha _2/(1-\alpha _2)\\ 1,&{}\theta _p < \alpha _2/(1-\alpha _2) \end{array}\right. \end{aligned}$$
(77)
where \({\mu _1},\,\,{\mu _4}\) are defined in “Appendix A”
Substituting (76) and (77) into (75), we have the exact closed-form expression of the outage probability of DFRSSA protocol as (37) and (38).