[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enhancing throughput in multi-radio cognitive radio networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In recent years, cognitive radio networks (CRNs) have been widely investigated to solve the well-known spectrum scarcity problem through enhancing spectrum utilization. Another technique of enhancing spectrum utilization, which has already been well accepted, is to utilize multiple radios on a single node. Simultaneous usage of both these techniques is, therefore, expected to enhance the spectrum utilization further in road to improving overall network performance. However, little research efforts have been spent on investigating performance of the simultaneous usage through incorporating multiple radios in each node of a CRN. Existing studies in this regard propose several protocols for multi-radio cognitive radio networks (MRCRNs). However, none of them focuses on enhancing throughput in the network to the best of our knowledge. Nonetheless, increased network throughput should be a direct consequence of enhanced spectrum utilization through exploiting multiple radios in CRNs, even though an existing study (Khan et al., in: 2015 IEEE 11th international conference on wireless and mobile computing, networking and communications (WiMob), IEEE, pp 370–377, 2015) reports getting decreased network throughput while introducing multiple radios in each node of a CRN. Thus, a specialized treatment to the multiple radios in each node of a CRN is needed for enhancing network throughput. Accordingly, in this study, we propose a feedback-based multi-radio exploitation approach for MRCRNs, where information obtained from lower layers (Physical layer and Data Link layer) is incorporated in the process of decision making in an upper layer (Application layer) to enhance network throughput. We implement our proposed approach in the network simulator ns-3 to evaluate different performance metrics including network throughput, average end-to-end delay, and average packet drop ratio. We compare the performance against that of existing multi-radio exploitation approaches for CRNs. Our simulation results reveal that our proposed feedback-based approach always achieves substantially increased network throughput compared to the existing approaches, in parallel to achieving improved delay and packet drop-ratio in most of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Staple, G., & Werbach, K. (2004). The end of spectrum scarcity. http://spectrum.ieee.org/telecom/wireless/the-end-of-spectrum-scarcity. Accessed July 8, 2017.

  2. Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M., & Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and observations. In 2010 proceedings of the fifth international conference on cognitive radio oriented wireless networks & communications (CROWNCOM) (pp. 1–5). IEEE.

  3. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  4. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  5. Bahl, P., Adya, A., Padhye, J., & Walman, A. (2004). Reconsidering wireless systems with multiple radios. ACM SIGCOMM Computer Communication Review, 34(5), 39–46.

    Article  Google Scholar 

  6. Adya, A., Bahl, P., Padhye, J., Wolman, A., & Zhou, L. (2004). A multi-radio unification protocol for IEEE 802.11 wireless networks. In First international conference on broadband networks, 2004. BroadNets 2004. Proceedings (pp. 344–354). IEEE.

  7. Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks. In Proceedings of the 10th annual international conference on mobile computing and networking (pp. 114–128). ACM.

  8. Miu, A., Balakrishnan, H., & Koksal, C. E. (2005). Improving loss resilience with multi-radio diversity in wireless networks. In Proceedings of the 11th annual international conference on mobile computing and networking (pp. 16–30). ACM.

  9. Song, W., & Zhuang, W. (2012). Performance analysis of probabilistic multipath transmission of video streaming traffic over multi-radio wireless devices. IEEE Transactions on Wireless Communications, 11(4), 1554–1564.

    Article  Google Scholar 

  10. Khan, T. A., Hyder, C. S., & Islam, A. A. (2015). Towards exploiting a synergy between cognitive and multi-radio networking. In 2015 IEEE 11th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 370–377). IEEE.

  11. Li, G., Gu, Z., Lin, X., Pu, H., & Hua, Q.-S. (2014). Deterministic distributed rendezvous algorithms for multi-radio cognitive radio networks. In Proceedings of the 17th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 313–320). ACM.

  12. Zhong, X., Qin, Y., & Li, L. (2014). Capacity analysis in multi-radio multi-channel cognitive radio networks: A small world perspective. Wireless Personal Communications, 79(3), 2209–2225.

    Article  Google Scholar 

  13. Hoang, A. T., & Liang, Y.-C. (2008). Downlink channel assignment and power control for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(8), 3106–3117.

    Article  Google Scholar 

  14. Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2014). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795–823.

    Article  Google Scholar 

  15. Gamal, A. E., Mammen, J., Prabhakar, B., & Shah, D. (2004). Throughput-delay trade-off in wireless networks. In INFOCOM 2004. Twenty-third annual joint conference of the IEEE computer and communications societies (Vol. 1). IEEE.

  16. De Domenico, A., Strinati, E. C., & Di Benedetto, M.-G. (2012). A survey on MAC strategies for cognitive radio networks. IEEE Communications Surveys & Tutorials, 14(1), 21–44.

    Article  Google Scholar 

  17. Feng, W., Cao, J., Zhang, C., & Liu, C. (2009). Joint optimization of spectrum handoff scheduling and routing in multi-hop multi-radio cognitive networks. In 29th IEEE international conference on distributed computing systems, 2009. ICDCS’09 (pp. 85–92). IEEE.

  18. Tandra, R., Mishra, S. M., & Sahai, A. (2009). What is a spectrum hole and what does it take to recognize one? Proceedings of the IEEE, 97(5), 824–848.

    Article  Google Scholar 

  19. Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5g-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication, 28, 130–137.

    Article  Google Scholar 

  20. Thomas, R. W., DaSilva, L. A., & MacKenzie, A. B. (2005). Cognitive networks. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 352–360). IEEE.

  21. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  22. Jondral, F. K. (2005). Software-defined radio: Basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2005(3), 275–283.

    Article  Google Scholar 

  23. Yau, K.-L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for cognitive radio networks: A survey. Journal of Network and Computer Applications, 45, 79–95.

    Article  Google Scholar 

  24. Jiang, C., Zhang, H., Ren, Y., & Chen, H.-H. (2014). Energy-efficient non-cooperative cognitive radio networks: Micro, meso, and macro views. IEEE Communications Magazine, 52(7), 14–20.

    Article  Google Scholar 

  25. Zhang, H., Nie, Y., Cheng, J., Leung, V. C., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730–743.

    Article  Google Scholar 

  26. Buddhikot, M. M., Kolodzy, P., Miller, S., Ryan, K., & Evans, J. (2005). Dimsumnet: New directions in wireless networking using coordinated dynamic spectrum. In Sixth IEEE international symposium on a world of wireless mobile and multimedia networks, 2005. WoWMoM 2005 (pp. 78–85). IEEE.

  27. Ileri, O., Samardzija, D., & Mandayam, N. B. (2005). Demand responsive pricing and competitive spectrum allocation via a spectrum server. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 194–202). IEEE.

  28. Zekavat, S. A., & Li, X. (2005). User-central wireless system: Ultimate dynamic channel allocation. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 82–87). IEEE.

  29. Chen, L., Huang, L., Xu, H., & Guo, H. (2018). Optimal channel allocation for multi-pu and multi-su pairs in underlay cognitive radio networks. International Journal of Ad Hoc and Ubiquitous Computing, 27(1), 19–33.

    Article  Google Scholar 

  30. Liu, X., Jia, M., Na, Z., Lu, W., & Li, F. (2018). Multi-modal cooperative spectrum sensing based on dempster-shafer fusion in 5g-based cognitive radio. IEEE Access, 6, 199–208.

    Article  Google Scholar 

  31. Liu, X., Jia, M., Zhang, X., & Lu, W. (2018). A novel multi-channel internet of things based on dynamic spectrum sharing in 5g communication. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2847731

    Article  Google Scholar 

  32. Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access, 5, 3801–3812.

    Article  Google Scholar 

  33. Gutierrez, J. A., Naeve, M., Callaway, E., Bourgeois, M., Mitter, V., & Heile, B. (2001). IEEE 802.15. 4: A developing standard for low-power low-cost wireless personal area networks. IEEE Network, 15(5), 12–19.

    Article  Google Scholar 

  34. Raniwala, A., & Chiueh, T.-C. (2005). Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In: INFOCOM 2005. 24th annual joint conference of the IEEE computer and communications societies. Proceedings IEEE (Vol. 3, pp. 2223–2234). IEEE.

  35. Wang, J.-P., Abolhasan, M., Safaei, F., & Franklin, D. (2007). A survey on control separation techniques in multi-radio multi-channel mac protocols. In International symposium on communications and information technologies, 2007. ISCIT’07 (pp. 854–859). IEEE.

  36. Ko, B.-J., Misra, V., Padhye, J., & Rubenstein, D. (2007). Distributed channel assignment in multi-radio 802.11 mesh networks. In Wireless communications and networking conference, 2007. WCNC 2007 (pp. 3978–3983). IEEE.

  37. Islam, A. B. M. A. A., Islam, M. J., Nurain, N., & Raghunathan, V. (2016). Channel assignment techniques for multi-radio wireless mesh networks: A survey. IEEE Communications Surveys & Tutorials, 18(2), 988–1017.

    Article  Google Scholar 

  38. Gabale, V., Raman, B., Dutta, P., & Kalyanraman, S. (2013). A classification framework for scheduling algorithms in wireless mesh networks. IEEE Communications Surveys & Tutorials, 15(1), 199–222.

    Article  Google Scholar 

  39. Kyasanur, P., & Vaidya, N. H. (2006). Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks. ACM SIGMOBILE Mobile Computing and Communications Review, 10(1), 31–43.

    Article  Google Scholar 

  40. Chatterjee, A., Deb, S., Nagaraj, K., & Srinivasan, V. (2013). Low delay mac scheduling for frequency-agile multi-radio wireless networks. IEEE Journal on Selected Areas in Communications, 31, 2262–2275.

    Article  Google Scholar 

  41. Cormio, C., & Chowdhury, K. R. (2009). A survey on mac protocols for cognitive radio networks. Ad Hoc Networks, 7(7), 1315–1329.

    Article  Google Scholar 

  42. Zhu, G.-M., Akyildiz, I. F., & Kuo, G.-S. (2008). Stod-rp: A spectrum-tree based on-demand routing protocol for multi-hop cognitive radio networks. In: Global telecommunications conference, 2008. IEEE GLOBECOM 2008 (pp. 1–5). IEEE.

  43. Ahmadi, M., Zhuang, Y., & Pan, J. (2012). Distributed robust channel assignment for multi-radio cognitive radio networks. In 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5). IEEE.

  44. Yi, C., & Cai, J. (2018). Ascending-price progressive spectrum auction for cognitive radio networks with power-constrained multiradio secondary users. IEEE Transactions on Vehicular Technology, 67(1), 781–794.

    Article  Google Scholar 

  45. Hawa, M., AlAmmouri, A., Alhiary, A., & Alhamad, N. (2017). Distributed opportunistic spectrum sharing in cognitive radio networks. International Journal of Communication Systems, 30(7), 1–30.

    Article  Google Scholar 

  46. Saini, J. S., & Sohi, B. S. (2018). Optimal power control algorithm for multi-radio multi-channel wireless mesh network. International Journal of Applied Engineering Research, 13(4), 2072–2077.

    Google Scholar 

  47. Xu, C., Zheng, M., Liang, W., Yu, H., & Liang, Y.-C. (2017). End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting. IEEE Transactions on Wireless Communications, 16(6), 3561–3572.

    Article  Google Scholar 

  48. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393(6684), 440.

    Article  Google Scholar 

  49. Ross, S. M. (2006). Introduction to probability models (9th ed.). Orlando, FL: Academic Press Inc.

    MATH  Google Scholar 

  50. Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.

    Article  Google Scholar 

  51. Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). Crahns: Cognitive radio ad hoc networks. AD Hoc Networks, 7(5), 810–836.

    Article  Google Scholar 

  52. Bian, K., & Park, J.-M. (2011). Asynchronous channel hopping for establishing rendezvous in cognitive radio networks. In INFOCOM, 2011 Proceedings IEEE (pp. 236–240).

  53. Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physical Communication, 4(1), 26–39.

    Article  Google Scholar 

  54. Thilina, K. G. M., Hossain, E., & Kim, D. I. (2016). DCCC-MAC: A dynamic common-control-channel-based mac protocol for cellular cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3597–3613.

    Article  Google Scholar 

  55. Tessmer, M., Cannon, L., Centuori, C., & Williams, A. (2007). Method and system for weighting odds to specific gaming entities in a shared bonus event. May 31 2007. US Patent App. 11/669,013.

  56. Wang, Y., Song, Y., & Liang, M. (2016). A skyline-based efficient web service selection method supporting frequent requests. In 2016 IEEE 20th international conference on computer supported cooperative work in design (CSCWD) (pp. 328–333).

  57. Al-Ali, A., & Chowdhury, K. (2014). Simulating dynamic spectrum access using ns-3 for wireless networks in smart environments. In 2014 eleventh annual IEEE international conference on sensing, communication, and networking workshops (SECON workshops) (pp. 28–33). IEEE.

  58. Heo, J., Shin, J., Nam, J., Lee, Y., Park, J. G., & Cho, H.-S. (2008). Mathematical analysis of secondary user traffic in cognitive radio system. In IEEE 68th vehicular technology conference, 2008. VTC 2008-Fall (pp. 1–5). IEEE.

  59. Winston, W. L. (2000). Simulation modeling using @ RISK. Duxbury: Duxbury Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. M. Alim Al Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.A., Islam, A.B.M.A.A. Enhancing throughput in multi-radio cognitive radio networks. Wireless Netw 25, 4383–4402 (2019). https://doi.org/10.1007/s11276-019-02103-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02103-6

Keywords