[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Novel side pose classification model of stretching gestures using three-layer LSTM

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In recent years, low back pain rehabilitation exercises have been widely performed for spine-related illnesses. To facilitate rehabilitation exercises, pose-based human action recognition technique is used to determine human movement from simple videos. Herein, we propose a new stretching side pose classification system using three-layer long short-term memory (LSTM) that can be used in rehabilitation therapy systems. Four types of rehabilitation treatment exercises are selected: bird dog, cat camel, cobra stretch, and pelvic tilt. Features selected based on the high frequency of use for each exercise resulted in improved classification. Consequently, the recognition rate of the selected feature is 97.50%, as classified by the three-layer LSTM model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spencer J, Degu A, Kalkidan A, Solomon A et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392:1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7

    Article  Google Scholar 

  2. Sharma S, Traeger AC, Mishra SR, Sharma S, Maher CG (2019) Delivering the right care to people with low back pain in low- and middle-income countries: the case of Nepal. J Global Health 9:010304. https://doi.org/10.7189/jogh.09.010304

    Article  Google Scholar 

  3. Beinart N, Goodchild C, Weinman J, Ayis SA, Godfrey E (2013) Individual and intervention-related factors associated with adherence to home exercise in chronic low back pain: a systematic review. Spine J: Offl J North Am Spine Soc. https://doi.org/10.1016/j.spinee.2013.08.027

    Article  Google Scholar 

  4. Czejdo B, Baszun M (2010) Remote patient monitoring system and a medical social network. Int J Soc Human Comput 1:273–281. https://doi.org/10.1504/IJSHC.2010.032688

    Article  Google Scholar 

  5. Pallasena R, Sharma M, Krishnaswamy V (2019) Context-sensitive smart devices—definition and a functional taxonomy. Int J Soc Human Comput 3:108–134. https://doi.org/10.1504/IJSHC.2019.101593

    Article  Google Scholar 

  6. Gordon R, Bloxham S (2016) A systematic review of the effects of exercise and physical activity on non-specific chronic low back pain. Healthcare 4:22. https://doi.org/10.3390/healthcare4020022

    Article  Google Scholar 

  7. Yakub F, Md K, Ahmad Z, Mori Y (2014) Recent trends for practical rehabilitation robotics, current challenges and the future. Int J Rehabil Res 37:9–21. https://doi.org/10.1097/MRR.0000000000000035

    Article  Google Scholar 

  8. Díaz I, Gil JJ, Sánchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot. https://doi.org/10.1155/2011/759764

    Article  Google Scholar 

  9. Su CJ, Chiang CY, Huang JY (2014) Kinect-enabled home-based rehabilitation system using Dynamic Time Warping and fuzzy logic. Appl Soft Comput 22:652–666. https://doi.org/10.1016/j.asoc.2014.04.020

    Article  Google Scholar 

  10. Cassola F, Morgado L, Carvalho F, Paredes H, Fonseca B, Martins P (2014) Online-gym: a 3D virtual gymnasium using kinect interaction. Procedia Technology 13:130–138. https://doi.org/10.1016/j.protcy.2014.02.017

    Article  Google Scholar 

  11. Ryan N, Christopher K, Eleanor Q, Ami M, Bambang P, Brad ED (2019) Systematic review of mobile health applications in rehabilitation. Arch Phys Med Rehabil 100:115–127. https://doi.org/10.1016/j.apmr.2018.07.439

    Article  Google Scholar 

  12. Kim Y, Jang S, Yoo Y (2014) Mobile assessment system for shoulder joint rehabilitation: system development and preliminary study. Int J Bio-Sci Bio-Technol 6:51–60. https://doi.org/10.14257/ijbsbt.2014.6.2.05

    Article  Google Scholar 

  13. Wang K, Wang XL, Lin L, Wang M, Zuo W (2015) 3D Human activity recognition with reconfigurable convolutional neural networks. Proceedings of the 2014 ACM Conference on Multimedia. https://doi.org/https://doi.org/10.1145/2647868.2654912

  14. Ongvisatepaiboon K, Vanijja V, Chignell M, Mekhora K, Chan J (2016) Smartphone-based audio-biofeedback system for shoulder joint tele-rehabilitation. J Med Imag Health Informat 6:1127–1134. https://doi.org/10.1166/jmihi.2016.1810

    Article  Google Scholar 

  15. Islam S, Bulbul F, Islam M (2018) A comparative study on human action recognition using multiple skeletal features and multiclass support vector machine. Mach Learn Appl: Int J 5:1–15. https://doi.org/10.5121/mlaij.2018.5201

    Article  Google Scholar 

  16. Kong Y, Fu Y (2018) Human action recognition and prediction: a survey. journal of latex class files 13. ArXiv:1806.11230

  17. Zhang H, Zhang YX, Zhong B, Lei Q, Yang L, Du JX, Chen DS (2019) A comprehensive survey of vision-based human action recognition methods. Sensors 19:1005. https://doi.org/10.3390/s19051005

    Article  Google Scholar 

  18. Jegham I, Khalif AB, Alouanic I, Mahjou MA (2020) Vision-based human action recognition: an overview and real world challenges. Foren Sci Int: Digit Investig. https://doi.org/10.1016/j.fsidi.2019.200901

    Article  Google Scholar 

  19. Pan JI, Chung HW, Huang JJ (2013) Intelligent Shoulder Joint Home-Based Self-Rehabilitation Monitoring System. Int J Smart Home 7(5):395–404. https://doi.org/10.14257/ijsh.2013.7.5.38

    Article  Google Scholar 

  20. Huang MC, Liu J, Xu W, Alshurafa N, Zhang X, Sarrafzadeh M (2014) Using pressure map sequences for recognition of on bed rehabilitation exercises. IEEE J Biomed Health Inform 18:411–418. https://doi.org/10.1109/JBHI.2013.2296891

    Article  Google Scholar 

  21. Ilktan A, Akgul Y (2014) A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera. IEEE Trans Neural Syst Rehabil Eng 22:1160–1171. https://doi.org/10.1109/TNSRE.2014.2326254

    Article  Google Scholar 

  22. Antón D, Goni A, Illarramendi A (2015) Exercise recognition for kinect-based telerehabilitation. Methods Inf Med 54:145–155. https://doi.org/10.3414/ME13-01-0109

    Article  Google Scholar 

  23. Ghazal S, Khan U (2018) Human posture classification using skeleton information. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies, pp 1–4. https://doi.org/10.1109/ICOMET.2018.8346407

  24. Toshev A, Szegedy C (2014) DeepPose: Human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp 1653–1660.https://doi.org/10.1109/CVPR.2014.214

  25. Cao Z, Martinez G, Simon T, Wei SE, Sheikh Y (2019) OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2929257

    Article  Google Scholar 

  26. Wang R, Cao Z, Wang X, Liu Z, Zhu X (2019) Human pose estimation with deeply learned multi-scale compositional models. IEEE Access 7:71158–71166. https://doi.org/10.1109/ACCESS.2019.2919154

    Article  Google Scholar 

  27. Tsai JK, Hsu CC, Wang WY, Huang SK (2020) Deep learning-based real-time multiple-person action recognition system. Sensors 20:4758. https://doi.org/10.3390/s20174758

    Article  Google Scholar 

  28. Wan S, Qi L, Xu X, Tong C, Gu Z (2020) Deep learning models for real-time human activity recognition with smartphones. Mob Netw Appl 25:743–755. https://doi.org/10.1007/s11036-019-01445-x

    Article  Google Scholar 

  29. Hassan MM, Uddin MZ, Mohamed A, Almogren A (2018) A robust human activity recognition system using smartphone sensors and deep learning. Future Gener Comput Syst 81:307–313. https://doi.org/10.1016/j.jksuci.2019.09.004

    Article  Google Scholar 

  30. Jaouedia N, Boujnah N, Bouhlelc MS (2020) A new hybrid deep learning model for human action recognition. J King Saud Univ–Comput Inf Sci 32:447–453. https://doi.org/10.1016/j.jksuci.2019.09.004

    Article  Google Scholar 

  31. Chena Y, Tianb Y, He M (2020) Monocular human pose estimation: a survey of deep learning-based methods. Comput Vis Image Underst 192:102897. https://doi.org/10.1016/j.cviu.2019.102897

    Article  Google Scholar 

  32. Arunnehru J., Nandhana AK, Sharan RR, Nambiar PG (2020) Human pose estimation and activity classification using machine learning approach. International Conference on Soft Computing and Signal Processing (ICSCSP), pp 113–123.https://doi.org/10.1007/978-981-15-2475-2_11

  33. Lipton ZC (2015) A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

  34. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  35. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  36. Du Y, Wang W, Wang L (2015) Hierarchical recurrent neural network for skeleton based action recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1110–1118. https://doi.org/10.1109/CVPR.2015.7298714

  37. Zhu W, Lan C, Xing J, Zeng W, Li Y, Shen L, Xie X (2016) Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: Proceedings of the 13th AAAI Conference on Artificial Intelligence, pp 3697–3703

  38. Liu J, Shahroudy A, Xu D, Wang G (2016) Spatio-temporal LSTM with trust gates for 3D human action recognition. 14th European Conference on Computer Vision. Springer, Cham, pp 816–833

    Google Scholar 

  39. Stearns CC, Kannappan K (1995) Method for 2-D affine transformation of images. US Patent No.5475803A

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Joo Cheoi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solongontuya, B., Cheoi, K.J. & Kim, MH. Novel side pose classification model of stretching gestures using three-layer LSTM. J Supercomput 77, 10424–10440 (2021). https://doi.org/10.1007/s11227-021-03684-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03684-w

Keywords

Navigation