[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Application of GRS codes to some entanglement-assisted quantum MDS codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement-assisted quantum error-correcting codes (EAQECCs) are a generalization of standard stabilizer quantum error-correcting codes, which can be possibly constructed from any classical codes by relaxing the duality condition and utilizing pre-shared entanglement between the sender and receiver to boost the rate of transmission. In this paper, we present some constructions of generalized Reed–Solomon codes and calculate the dimension of their hulls. With these generalized Reed–Solomon codes, we obtain four infinite families new constructions of EAQECCs, which are optimal with respect to the Singleton bound for EAQECCs. Notably, the parameters of our EAQECCs are flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article.

References

  1. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  2. Calderbank, A.R., Rains, E.M., Shor, P., Sloane, N.J.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  3. Grassl, M., Beth, T., Roetteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(01), 55–64 (2004)

    Article  Google Scholar 

  4. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  5. La Guardia, G.G.: New families of asymmetric quantum BCH codes. Quantum Inf. Comput. 11(3), 239–252 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493 (1995)

    Article  ADS  Google Scholar 

  7. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wang, L., Feng, K., Ling, S., Xing, C.: Asymmetric quantum codes: characterization and constructions. IEEE Trans. Inf. Theory 56(6), 2938–2945 (2010)

    Article  MathSciNet  Google Scholar 

  9. Brun, T., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Brun, T.A., Devetak, I., Hsieh, M.-H.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60(6), 3073–3089 (2014)

    Article  MathSciNet  Google Scholar 

  11. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18(4), 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  12. Grassl, M., Huber, F., Winter, A.: Entropic proofs of singleton bounds for quantum error-correcting codes. ArXiv preprint arXiv:2010.07902 (2020)

  13. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17(10), 1–18 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Grassl, M.: Entanglement-assisted quantum communication beating the quantum singleton bound. Phys. Rev. A 103(2), 020601 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lai, C.-Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88(1), 012320 (2013)

    Article  ADS  Google Scholar 

  16. Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Appl. 53, 309–325 (2018)

    Article  MathSciNet  Google Scholar 

  17. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Crypt. 86(7), 1565–1572 (2018)

    Article  MathSciNet  Google Scholar 

  19. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77(6), 064302 (2008)

    Article  ADS  Google Scholar 

  20. Shin, J., Heo, J., Brun, T.A.: Entanglement-assisted codeword stabilized quantum codes. Phys. Rev. A 84(6), 062321 (2011)

    Article  ADS  Google Scholar 

  21. Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18(2), 1–28 (2019)

    Article  MathSciNet  Google Scholar 

  22. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16(12), 1–22 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quantum Inf. Process. 18(3), 71 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Allahmadi, A., AlKenani, A., Hijazi, R., Muthana, N., Özbudak, F., Solé, P.: New constructions of entanglement-assisted quantum codes. Cryptogr. Commun. 14, 15–37 (2022)

  25. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Crypt. 86(1), 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  26. Assmus, E., Key, J.: Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  27. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. 16, 33–34 (1977)

    Google Scholar 

  28. Jin, L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Chen, B., Liu, H.: New constructions of MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(8), 5776–5782 (2017)

    Article  MathSciNet  Google Scholar 

  30. Lai, C.-Y., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for useful comments and suggestions that improved the presentation and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Nos. 61772147 and 12171114)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Tang, C. Application of GRS codes to some entanglement-assisted quantum MDS codes. Quantum Inf Process 21, 98 (2022). https://doi.org/10.1007/s11128-022-03443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03443-7

Keywords

Navigation