Abstract
Laser defects in emitting single photon, photon signal attenuation and propagation of error cause our serious headaches in practical long-distance quantum key distribution (QKD) experiment for a long time. In this paper, we study the uncertainty principle in metrology and use this tool to analyze the statistical fluctuation of the number of received single photons, the yield of single photons and quantum bit error rate (QBER). After that we calculate the error between measured value and real value of every parameter, and concern the propagation error among all the measure values. We paraphrase the Gottesman–Lo–Lutkenhaus–Preskill (GLLP) formula in consideration of those parameters and generate the QKD simulation result. In this study, with the increase in coding photon length, the safe distribution distance is longer and longer. When the coding photon’s length is \(N = 10^{11}\), the safe distribution distance can be almost 118 km. It gives a lower bound of safe transmission distance than without uncertainty principle’s 127 km. So our study is in line with established theory, but we make it more realistic.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wiesner, S.: Conjugate coding. SIG A CT News 15, 78–88 (1983)
Bennett CH., Brassard, G.: Quantum cryptography: public-key distribution and co in tossing [A]. In: Pro-ceedings of the International Conference on Computers, Systems and Signal Processing, pp. 175–179. Ban-galore Press, India (1984)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2000)
Cinelli, C., Barbieri, M., Martini, F.D., et al.: Realization of hyperentangled two-photon states. Int. J. Laser Phys. 15(1), 124–128 (2005)
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)
Bennett, C.H., et al.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)
Smolin, J.A.: The early days of experimental quantum cryptography. OBM J. Res. Dev. Phys. Inf. 48(1), 47–52 (2004)
Tang, X., et al.: High speed fiber-based quantum key distribution using polarization encoding. In: Proceedings of SPIE. 5893, 58931 A (1–9), (2005)
Tang, X., et al.: Quantum key distribution system operating at sifted-key rate over 4 Mbit/s. In: Proceedings of SPIE. 6244, 62440P(1–8), (2006)
Mink, A., Tang, A. et al.: High speed quantum key distribution system supports one-time pad encryption of real-time video. In: Proceedings of SPIE. 6244, 62440M (1–7), (2006)
Gordon, K.J., et al.: A short wavelength gigahertz clocked fiber-optic quantum key distribution system. IEEE J. Quantum Electron. 40(7), 900–908 (2004)
Gordon, K.J., et al.: Quantum key distribution system clocked at 2 GHz. Opt. Express 13(8), 3015–3020 (2005)
Gordon, K.J. et al. 3.3 gigahertz clocked quantum key distribution system. In: ECOC European Conference on Optical Communication, vol. 4, pp. 913–914, (2005)
Takesue, H., Diamanti, E., Honjo, T., Langrock, C., Fejer, M.M., Inoue, K., Yamamoto, Y.: Differential phase shift quantum key distribution experiment over 105 km fibre. New J. Phys. 7(1), 232–232 (2005)
Takesue, H., Honjo, T., Inoue, K., Diamanti, E., Langrock, C., Fejer, N.M., Yaniamoto, Y.: Ultra-fast differential-phase-shift quantum key distribution using single-photon detectors based on up-conversion in periodically poled lithium niobate waveguides. In Optical Fiber Communication—OFC, (2006)
Stucki, D., Walenta, N., Vannel, F., Thew, R.T., Gisin, N., Zbinden, H., Gray, S., Towery, C.R., Ten, S.: High rate, long-distance quantum key distribution over 250 km of ultralow loss fibres. New J. Phys. 11(7), 075003 (2009)
Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., Bao, W.-S., Han, Z.-F.: Attacking practical quantum key distribution system with wavelength dependent beam splitter and multi-wavelength sources. Phys. Rev. A 84, 062308 (2011)
Hwang, Won-Young: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)
Lo, Hoi-Kwong, Ma, Xiongfeng, Chen, Kai: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)
Xiongfeng, Ma., et al.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)
Gottesman, D., Lo, H.-K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect device. Quantum Info. Comput. 4(5), 325–360 (2004)
Jiao, R., Tang, S., Zhang, C.: Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Phys. Sin. 61(5), 50302–050302 (2012)
Lütkenhaus, Norbert: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000)
Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, D., An, H., Zhang, X. et al. The statistical fluctuation study of quantum key distribution in means of uncertainty principle. Quantum Inf Process 17, 52 (2018). https://doi.org/10.1007/s11128-018-1814-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1814-0