[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Quantum discord of states arising from graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum discord refers to an important aspect of quantum correlations for bipartite quantum systems. In our earlier works, we have shown that corresponding to every graph (combinatorial) there are quantum states whose properties are reflected in the structure of the corresponding graph. Here, we attempt to develop a graph theoretic study of quantum discord that corresponds to a necessary and sufficient condition of zero quantum discord states which says that the blocks of density matrix corresponding to a zero quantum discord state are normal and commute with each other. These blocks have a one-to-one correspondence with some specific subgraphs of the graph which represents the quantum state. We obtain a number of graph theoretic properties representing normality and commutativity of a set of matrices which are indeed arising from the given graph. Utilizing these properties, we define graph theoretic measures for normality and commutativity that results in a formulation of graph theoretic quantum discord. We identify classes of quantum states with zero discord using the developed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  2. Hall, B.C.: Quantum Theory for Mathematicians. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  3. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, no. 186. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  4. Dür, W., Aschauer, H., Briegel, H.-J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91(10), 107903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. Braunstein, S.L., Ghosh, S., Severini, S.: The Laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states. Ann. Comb. 10(3), 291–317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adhikari, B., Banerjee, S., Adhikari, S., Kumar, A.: Laplacian matrices of weighted digraphs represented as quantum states. Quantum Inf. Process. 16(3), 79 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dutta, S., Adhikari, B., Banerjee, S., Srikanth, R.: Bipartite separability and non-local quantum operations on graphs. Phys. Rev. A 94(1), 012306 (2016)

    Article  ADS  Google Scholar 

  8. Dutta, S., Adhikari, B., Banerjee, S.: A graph theoretical approach to states and unitary operations. Quantum Inf Process. 15(5), 2193–2212 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84(4), 1655 (2012)

    Article  ADS  Google Scholar 

  10. Barnett, S.: Quantum Information, vol. 16. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  11. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  14. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105(19), 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  15. Adhikari, S., Banerjee, S.: Operational meaning of discord in terms of teleportation fidelity. Phys. Rev. A 86(6), 062313 (2012)

    Article  ADS  Google Scholar 

  16. Huang, J.-H., Wang, L., Zhu, S.-Y.: A new criterion for zero quantum discord. New J. Phys. 13(6), 063045 (2011)

    Article  ADS  Google Scholar 

  17. Shabani, A., Lidar, D.A.: Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102(10), 100402 (2009)

    Article  ADS  Google Scholar 

  18. Rodríguez-Rosario, C.A., Modi, K., Kuah, A., Shaji, A., Sudarshan, E.C.G.: Completely positive maps and classical correlations. J. Phys. A Math. Theor. 41(20), 205301 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Sabapathy, K.K., Ivan, J.S., Ghosh, S., Simon, R.: Quantum discord plays no distinguished role in characterization of complete positivity: Robustness of the traditional scheme. arXiv preprint arXiv:1304.4857 (2013)

  20. Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76(15), 2818 (1996)

    Article  ADS  Google Scholar 

  21. Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100(9), 090502 (2008)

    Article  ADS  Google Scholar 

  22. Dutta, S., Adhikari, B., Banerjee, S.: Zero discord quantum states arising from weighted digraphs. arXiv preprint arXiv:1705.00808 (2017)

  23. Bapat, R.B.: Graphs and Matrices. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  24. Cvetković, D., Rowlinson, P., Simić, S.K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423(1), 155–171 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brualdi, R.A.: Combinatorial Matrix Classes, vol. 13. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  26. Guo, Y.: Non-commutativity measure of quantum discord. Sci. Rep. 6, 25241 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848517/

  27. Streltsov, A.: Quantum Discord and its Role in Quantum Information Theory. ArXiv e-prints (2014)

  28. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)

    Article  ADS  Google Scholar 

  29. Li, N., Luo, S.: Total versus quantum correlations in quantum states. Phys. Rev. A 76(3), 032327 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  31. Huang, Y.: Computing quantum discord is np-complete. New J. Phys. 16(3), 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Project Graph theoretical aspects in quantum information processing [Grant No. 25(0210)/13/EMR-II] funded by Council of Scientific and Industrial Research, New Delhi. S.D. is grateful to the Ministry of Human Resource Development, Government of India, for a doctoral fellowship. This work may be a part of his doctoral thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriyo Dutta.

Additional information

This work is supported by CSIR (Council of Scientific and Industrial Research) Grant No. 25(0210)/13/EMR-II, New Delhi, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Adhikari, B. & Banerjee, S. Quantum discord of states arising from graphs. Quantum Inf Process 16, 183 (2017). https://doi.org/10.1007/s11128-017-1636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1636-5

Keywords

Navigation