Abstract
In this paper, we propose and analyze a second-order decoupled algorithm with different subdomain time steps for the non-stationary Stokes/Darcy model. It is based on the second-order spectral deferred correction method in time and the finite element method in space. We provide the stability and convergence results of our decoupled scheme. Last, some numerical experiments are given to illustrate the accuracy and effectiveness of our decoupled scheme.
Similar content being viewed by others
References
Bernardi, C., Orfi, A.Y.: A priori error analysis of the fully discretized time-dependent coupled Darcy and Stokes equations. Sema J. 38(3), 1–23 (2004)
Bernardi, C., Orfi, A.Y.: A priori error analysis of the fully discretized time-dependent coupled Darcy and Stokes equations. SeMA J. 73(2), 97–119 (2016)
Bernardi, C., Orfi, A.Y.: A posteriori error analysis of the fully discretized time-dependent coupled Darcy and Stokes equations. Comput. Math. Appl. 76(2), 340–360 (2018)
Bourlioux, A., Layton, A. T., Minion, M. L.: High-order multi-implicit spectral deferred correction methods for problems of reactive flow. J. Comput. Phys. 189(2), 651–675 (2003)
Causley, M., Seal, D.: On the convergence of spectral deferred correction methods. Commun. Appl. Math. Comput. Sci. 14(1), 33–64 (2019)
Connors, J. M.: Partitioned time discretization for atmosphere-ocean interaction. Ph.D. thesis, University of Pittsburgh (2010)
Connors, J. M., Howell, J. S.: A fluid-fluid interaction method using decoupled subproblems and differing time steps. Numer. Methods Partial Differ. Equ. 28(4), 1283–1308 (2012)
Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. Tech. rep. EPFL (2004)
Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Visual. Sci. 6(2–3), 93–103 (2004)
Du, G., Li, Q., Zhang, Y: A two-grid method with backtracking for the mixed Navier-Stokes/Darcy model. Numer. Methods Partial Differ. Equ. 36 (6), 1601–1610 (2020)
Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. Bit Numer. Math. 40(2), 241–266 (2000)
Girault, V., Kanschat, G., Rivire, B.: Error analysis for a monolithic discretization of coupled Darcy and Stokes problems. J. Numer. Math. 22(2), 109–142 (2014)
Gunzburger, M., Labovsky, A.: High accuracy method for turbulent flow problems. Math. Models Methods Appl. Sci. 22(6), 1250005 (2012)
Guo, R., Xu, Y. : High order numerical simulations for the binary fluid-surfactant system using the discontinuous Galerkin and spectral deferred correction methods. SIAM J. Sci. Comput. 42(2), B353–B378 (2020)
Hamon, F. P., Day, M. S., Minion, M.L.: Concurrent implicit spectral deferred correction scheme for low-Mach number combustion with detailed chemistry. Combust. Theory Model. 23(2), 279–309 (2019)
Heywood, J. G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)
Hoppe, R. H., Porta, P., Vassilevski, Y.: Computational issues related to iterative coupling of subsurface and channel flows. Calcolo 44(1), 1–20 (2007)
Hou, Y.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Appl. Math. Lett. 57, 90–96 (2016)
Jia, J., Hill, J. C., Evans, K. J., Fann, G. I., Taylor, M. A.: A spectral deferred correction method applied to the shallow water equations on a sphere. Mon. Weather Rev. 141(10), 3435–3449 (2013)
Layton, W. J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)
Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations. Math. Methods Appl. Sci. 38(18), 4564–4575 (2015)
Minion, M. L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003)
Minion, M. L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer. Math. 48(3), 369–387 (2004)
Minion, M. L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(5), 265–301 (2011)
Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45 (5), 1801–1813 (2007)
Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput. 79(270), 707–731 (2010)
Peszyńska, M., Wheeler, M. F., Yotov, I.: Mortar upscaling for multiphase flow in porous media. Comput. Geosci. 6(1), 73–100 (2002)
Rong, Y., Hou, Y., Zhang, Y.: Numerical analysis of a second order algorithm for simplified magnetohydrodynamic flows. Adv. Comput. Math. 43(4), 823–848 (2017)
Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys. 272, 327–342 (2014)
Rybak, I., Magiera, J., Helmig, R., Rohde, C.: Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci. 19(2), 299–309 (2015)
Shan, L., Zheng, H., Layton, W.J.: A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer. Methods Partial Differ. Equ. 29(2), 549–583 (2013)
Shevchenko, I., Kaltenbacher, M., Wohlmuth, B.: A multi-time stepping integration method for the ultrasound heating problem. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 92(11–12), 869–881 (2012)
Xue, D., Hou, Y.: Numerical analysis of a second order algorithm for a non-stationary Navier-Stokes/Darcy model. J. Comput. Appl. Math. 369, 112579 (2020)
Zuo, L., Du, G.: A multi-grid technique for coupling fluid flow with porous media flow. Comput. Math. Appl. 75(11), 4012–4021 (2018)
Funding
This work is supported by the National Natural Science Foundation of China (Grant No. 11971378 & 11571274).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Xue, D., Hou, Y. A second-order decoupled algorithm with different subdomain time steps for the non-stationary Stokes/Darcy model. Numer Algor 88, 1137–1182 (2021). https://doi.org/10.1007/s11075-021-01070-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01070-4