[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Modifications of Newton’s method for even-grade palindromic polynomials and other twined polynomials

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The paper describes some modifications of Newton’s method for refining the zeros of even-grade f(x)-twined (f(x)-egt) polynomials, defined as polynomials whose roots appear in pairs {x i ,f(x i )}. Particular attention is given to even-grade palindromic (egp) polynomials. The algorithms are derived from certain symmetric division processes for computing a symmetric quotient and a symmetric remainder of two given f(x)-egt polynomials. Numerical results indicate that the presented algorithms can be more accurate than other methods which do not take into consideration the symmetry of the coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bini D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algorithms 23(2–3), 127–173 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bini, D.A., Noferini, V.: Solving polynomial eigenvalue problems by means of the Ehrlich-Aberth method. (2012). http://arxiv.org/pdf/1207.6292v1.pdf. Accessed 27 July 2012

  3. da Fonseca, C.M., Petronilho, J.: Explicit inverses of some tridiagonal matrices. Linear Algebra Appl. 325(1–3), 7–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gemignani, L., Noferini, V.: The Ehrlich-Aberth method for palindromic matrix polynomials represented in the Dickson basis. Linear Algebra Appl. (2012). doi:10.1016/j.laa.2011.10.035

    Google Scholar 

  5. Gohberg, I., Kaashoek, M.A., Lancaster, P.: General theory of regular matrix polynomials and band Toeplitz operators. Integr. Equ. Oper. Theory 11(6), 776–882 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Golberg, M.A.: The derivative of a determinant. Am. Math. Mon. 79, 1124–1126 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goodman, T.N.T., Micchelli, C.A., Rodriguez, G., Seatzu, S.: Spectral factorization of Laurent polynomials. Adv. Comput. Math. 7(4), 429–454 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kressner, D., Schröder, C., Watkins, D.S.: Implicit QR algorithms for palindromic and even eigenvalue problems. Numer. Algorithms 51(2), 209–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lang, M., Frenzel, B.C.: Polynomial root finding. IEEE Signal Process. Lett. 1(10), 141–143 (1994)

    Article  Google Scholar 

  10. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Smith Forms of Palindromic Matrix Polynomials. Electron. J. Linear Algebra 22, 53–91 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28(4), 1029–1051 (electronic), (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Noferini, V.: The behaviour of the complete eigenstructure of a polynomial matrix under a generic rational transformation. Electron. J. Linear Algebra 23, 607–624 (2012)

    Google Scholar 

  13. Saux Picart, P., Brunie, C.: Symmetric subresultants and applications. J. Symb. Comput. 42(9), 884–919 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanni Noferini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gemignani, L., Noferini, V. Modifications of Newton’s method for even-grade palindromic polynomials and other twined polynomials. Numer Algor 61, 315–329 (2012). https://doi.org/10.1007/s11075-012-9618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9618-2

Keywords

Mathematics Subject Classifications (2010)

Navigation