Abstract
Let a, b be fixed positive integers such that a ≠ b, min(a, b) > 1, ν(a−1) and ν(b − 1) have opposite parity, where ν(a − 1) and ν(b − 1) denote the highest powers of 2 dividing a − 1 and b − 1 respectively. In this paper, all positive integer solutions (x, n) of the equation (a n − 1)(b n − 1) = x 2 are determined.
Similar content being viewed by others
References
M. A. Bennett and C. M. Skinner, Ternary diophantine equations via Galois representations and modular forms, Canad. J. Math., 56 (2004), 23–54.
J. H. E. Cohn, The diophantine equation (a n − 1)(b n − 1) = x 2, Period. Math. Hungar., 44 (2002), 169–175.
J. H. E. Cohn, The diophantine equation x n = Dy 2 +1, Acta Arith., 106 (2003), 73–78.
L. Hajdu and L. Szalay, On the diophantine equation (2n − 1)(6n − 1) = x 2 and (a n − 1)(a kn − 1) = x 2, Period. Math. Hungar., 40 (2000), 141–145.
E. Herrmann, I. Járási and A. Pethö, Note on J. H. E. Cohnś paper “The diophantine equation x n = Dy 2 + 1”, Acta Arith., 113 (2004), 69–76.
M.-H. Le, A note on the exponential diophantine equation (2n − 1)(b n − 1) = x 2, Publ. Math. Debrecen, 74 (2009), 401–403.
L. Li and L. Szalay, On the exponential diophantine equation (a n−1)(b n−1) = x 2, Publ. Math. Debrecen, 77 (2010), 465–470.
F. Luca and P. G. Walsh, The product of like-indexed terms in binary recurrences, J. Number Theory, 96 (2002), 152–173.
T. Nagell, Über die rationaler punkte auf einigen kubischen kurven, Tohoku Math. J., 24 (1924), 48–53.
W. Robert and van Der Waall , On the diophantine equation x 2 + x + 1 = 3y 2, x 3 − 1 = 2y 2 and x 3 + 1 = 2y 2, Simon Stevin, 46 (1972), 39–51.
L. Szalay, On the diophantine equation (2n − 1)(3n − 1) = x 2, Publ. Math. Debrecen, 57 (2000), 1–9.
D. T. Waker, On the diophantine equation mx 2 − ny 2 = ±1, Amer. Math. Monthly, 74 (1967), 504–513.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Attila Pethő
This work is supported by the National Natural Science Foundation of P. R. China (No. 11071194).
Rights and permissions
About this article
Cite this article
Xiaoyan, G. A note on the diophantine equation (a n − 1)(b n − 1) = x 2 . Period Math Hung 66, 87–93 (2013). https://doi.org/10.1007/s10998-012-6964-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-012-6964-8