[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A note on the diophantine equation (a n − 1)(b n − 1) = x 2

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let a, b be fixed positive integers such that ab, min(a, b) > 1, ν(a−1) and ν(b − 1) have opposite parity, where ν(a − 1) and ν(b − 1) denote the highest powers of 2 dividing a − 1 and b − 1 respectively. In this paper, all positive integer solutions (x, n) of the equation (a n − 1)(b n − 1) = x 2 are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Bennett and C. M. Skinner, Ternary diophantine equations via Galois representations and modular forms, Canad. J. Math., 56 (2004), 23–54.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. H. E. Cohn, The diophantine equation (a n − 1)(b n − 1) = x 2, Period. Math. Hungar., 44 (2002), 169–175.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. H. E. Cohn, The diophantine equation x n = Dy 2 +1, Acta Arith., 106 (2003), 73–78.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Hajdu and L. Szalay, On the diophantine equation (2n − 1)(6n − 1) = x 2 and (a n − 1)(a kn − 1) = x 2, Period. Math. Hungar., 40 (2000), 141–145.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Herrmann, I. Járási and A. Pethö, Note on J. H. E. Cohnś paper “The diophantine equation x n = Dy 2 + 1”, Acta Arith., 113 (2004), 69–76.

    Article  MathSciNet  MATH  Google Scholar 

  6. M.-H. Le, A note on the exponential diophantine equation (2n − 1)(b n − 1) = x 2, Publ. Math. Debrecen, 74 (2009), 401–403.

    MathSciNet  MATH  Google Scholar 

  7. L. Li and L. Szalay, On the exponential diophantine equation (a n−1)(b n−1) = x 2, Publ. Math. Debrecen, 77 (2010), 465–470.

    MathSciNet  MATH  Google Scholar 

  8. F. Luca and P. G. Walsh, The product of like-indexed terms in binary recurrences, J. Number Theory, 96 (2002), 152–173.

    MathSciNet  MATH  Google Scholar 

  9. T. Nagell, Über die rationaler punkte auf einigen kubischen kurven, Tohoku Math. J., 24 (1924), 48–53.

    MATH  Google Scholar 

  10. W. Robert and van Der Waall , On the diophantine equation x 2 + x + 1 = 3y 2, x 3 − 1 = 2y 2 and x 3 + 1 = 2y 2, Simon Stevin, 46 (1972), 39–51.

    MathSciNet  MATH  Google Scholar 

  11. L. Szalay, On the diophantine equation (2n − 1)(3n − 1) = x 2, Publ. Math. Debrecen, 57 (2000), 1–9.

    MathSciNet  MATH  Google Scholar 

  12. D. T. Waker, On the diophantine equation mx 2ny 2 = ±1, Amer. Math. Monthly, 74 (1967), 504–513.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Xiaoyan.

Additional information

Communicated by Attila Pethő

This work is supported by the National Natural Science Foundation of P. R. China (No. 11071194).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiaoyan, G. A note on the diophantine equation (a n − 1)(b n − 1) = x 2 . Period Math Hung 66, 87–93 (2013). https://doi.org/10.1007/s10998-012-6964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-012-6964-8

Mathematics subject classification numbers

Key words and phrases

Navigation