[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Hand-held Mosaicked Multispectral Imaging Device for Early Stage Pressure Ulcer Detection

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The use of a custom filter mosaic overlaying a CMOS/CCD sensor represents a novel idea to multispectral imaging. The innovation provides simple, miniaturized, low cost instrumentation that has many potential biological applications which require a hand-held detector. This makes it extremely adaptable and can serve as an integrated component to distributed diagnosis and home healthcare (D2H2). A mosaicked sensor is a monolithic array of many sensors, arranged in a geometric pattern with each sensor covered by an optical filter sensitive to a specified wavelength. In this way, only one spectral component is sensed at each pixel and the other spectral components must be estimated from neighbors. Although with great potential, one challenge faced by this device, however, is the reconstruction of the high-resolution full-spectral image from the low-resolution input. Due to the physical limitations in fabrication and the usage of the multispectral filter mosaic, two types of degradations exist, including filter misalignment and the missing spectral components, that must be corrected using intelligent algorithms to take full advantage of the hardware capability of the device. In this paper, we first describe a custom geometric correction method to restore the image from the misalignment distortion. We then present a binary tree-based generic demosaicking algorithm to efficiently estimate the missing special components and reconstruct a high-resolution full-spectral image. We choose early detection of pressure ulcer as a targeting area as early stage pressure ulcers and other subcutaneous lesions are nearly invisible in clinical settings, particularly so for dark pigmented skin. We show how the geometric correction and demosaicking algorithms successfully reconstruct a full-spectral image from which apparent contrast enhancement between damaged skin and the normal skin is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karacali, B., and Snyder, W., Automatic target detection using multispectral imaging. In: 31st Applied Imagery Pattern Recognition Workshop. p. 55. Washington, DC, 2002.

  2. Chen, Y. R., Chao, K., and Kim, M. S., Machine vision technology for agriculture applications. Comput. Electron. Agric. 36(2–3):173–191, 2002.

    Article  Google Scholar 

  3. Blackman, G., Surface inspection—scanning the surface. In: Imaging and Machine Vision Europe, 2009.

  4. Lu, R., and Park, B., Hyperspectral and multispectral imaging for food quality and safety. Sensing and Instrumentation for Food Quality and Safety 2(3):131–132, 2008.

    Article  Google Scholar 

  5. Lu, R., Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Elsevier Journal on Postharvest Biology and Technology 31:147–157, 2004.

    Article  Google Scholar 

  6. Miao, L., Qi, H., and Szu, H., A maximum entropy approach to unsupervised mixed pixel decomposition. IEEE Trans. Image Process 16(4):1008–1021, 2007.

    Article  MathSciNet  Google Scholar 

  7. Silva, D. M., and Abileah, R., System and method for multispectral image processing of ocean imagery. United State Patent 6304664, 2010.

  8. Wu, Q., Zeng, L., Ke, H., Zheng, H., Gao, X., and Wang, D., A multispectral imaging analysis system for early detection of cervical cancer. In: Medical Imaging: Physics of Medical Imaging. Vol. 5745, pp. 801–809. SPIE, 2005.

  9. Levenson, R. M., Lynch, D. T., Kobayashi, H., Backer, J. M., and Backer, M. V., Multiplexing with multispectral imaging: from mice to microscopy. ILAR J. (Institute for Laboratory Animal Research). 49(1):78–88, 2008.

    Google Scholar 

  10. Levenson, R. M., and Mansfield, J. R., Multispectral imaging in biology and medicine: Slices of life. Cytometry: Part A. 69A(8):748–758, 2006.

    Article  Google Scholar 

  11. Scribner, D. A., Schuler, J., and Kruer, M. R., Infrared multispectral sensors: re-considering typical design assumptions. Naval Research Lab., Code 5636, 1998.

  12. Barrie, J. D., Aitchison, K. A., Rossano, G. S., and Abraham, M. H., Patterning of multilayer dielectric optical coating for multispectral CCDs. Thin Solid Films 270(1–2):6–9, 1995.

    Article  Google Scholar 

  13. Kong, L., Sprigle, S., Duckworth, M., Yi, D., Caspall, J., Wang, J., and Zhao, F., Handheld erythema and bruise detector. In: Proceedings of SPIE—Medical Imaging: Computer-Aided Diagnosis. Vol. 6915, 2008.

  14. Kong, L., Yi, D., Sprigle, S., Wang, F., Wang, C., Liu, F., Adibi, A., and Tummala, R., Single sensor that outputs narrowband multispectral images. J. Biomed. Opt. 15:010502, 2010.

    Article  Google Scholar 

  15. Themelis, G., Yoo, J. S., and Ntziachristos, V., Multispectral imaging using multiple-band pass filters. Opt. Lett. 33(9):1023, 2008.

    Article  Google Scholar 

  16. Vila, J., Calpe, J., Pla, F., Gomez, L., Connell, J., Marchant, J., Calleja, J., Mulqueen, M., Munoz, J., and Klaren, A., SmartSpectra: Applying multispectral imaging to industrial environments. Real-Time Imaging 11:85–98, 2005.

    Article  Google Scholar 

  17. Bayer, E. B., Color imaging array. United States Patent 3,971,065, 1976.

  18. Packer, O., and Williams, D. R., Light, the retinal image, and photoreceptors. In: Shevell, S. K. (Ed.), The Science of Color. pp. 41–102. Optical Society of America, 2003.

  19. Ramanath, R., Snyder, W. E., and Bilbro, G., Demosaicking methods for bayer color arrays. J. Electron. Imaging 11(3):306–315, 2002.

    Article  Google Scholar 

  20. Lukac, R., Martin, K., and Plataniotis, K. N., Demosaikced image postprocessing using local color ratios. EEE Trans. Circuits Syst. Video Technol. 14(6):914–920, 2004.

    Article  Google Scholar 

  21. Chang, L., and Tan, Y. P., Effective use of spatial and spectral correlations for color filter array demosaicking. IEEE Trans. Consum. Electron. 50(1):355–365, 2004.

    Article  Google Scholar 

  22. Gunturk, B. K., Altunbasak, Y., and Mersereau, R. M., Color plane interpolation using alternating projections. IEEE Trans. Image Process. 11(9):997–1013, 2002.

    Article  Google Scholar 

  23. Li, X., and Orchard, M. T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10):1521–1527, 2001.

    Article  Google Scholar 

  24. Miao, L., Qi, H., Ramanath, R., and Snyder, W. E., Binary tree-based generic demosaicking algorithm for multispectral filter arrays. IEEE Trans. Image Process. 15(11):3550–3558, 2006.

    Article  Google Scholar 

  25. Ramanath, R., Snyder, W. E., and Qi, H., Mosaic multispectral focal plane array cameras. In: SPIE Defense and Security Symposium, Orlando (Kissimmee), FL, 12–16 April 2004.

  26. Sprigle, S., Zhang, L., and Duckworth, M., Detection of skin erythema in darkly pigmented skin using multispectral images. Skin & Wound Care 22(4):172–179, 2009.

    Article  Google Scholar 

  27. Mersereau, R., The processing of hexagonally samples two-dimensional signals. Proc. IEEE 67(6):930–949, 1979.

    Article  Google Scholar 

  28. Middleton, L., and Sivaswamy, J., Edge detection in a hexagonal-image processing framework. Image Vis. Comput. 19(14):1071–1081, 2001.

    Article  Google Scholar 

  29. Miao, L., and Qi, H., The design and evaluation of a generic method for generating mosaicked multispectral filter arrays. IEEE Trans. Image Process. 15(9):2780–2791, 2006.

    Article  Google Scholar 

  30. Lu, W., and Tan, Y. P., Color filter array demosaicking: new method and performance measures. IEEE Trans. Image Process. 12(10):1194–1210, 2003.

    Article  Google Scholar 

  31. Kimmel, R., Demosaicing: Image reconstruction from color ccd samples. IEEE Trans. Image Process. 8(9):1221–1228, 1999.

    Article  Google Scholar 

  32. Mosby’s Medical Dictionary, 8th edn. Elsevier, 2009. http://medical-dictionary.thefreedictionary.com/pressure+ulcer.

  33. Mcgraw-Hill Concise Dictionary of Modern Medicine. The Mcgraw-Hill Companies, Inc., 2002. http://medical-dictionary.thefreedictionary.com/pressure+ulcer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Qi.

Additional information

H. Qi and L. Kong contributed equally in the presented work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, H., Kong, L., Wang, C. et al. A Hand-held Mosaicked Multispectral Imaging Device for Early Stage Pressure Ulcer Detection. J Med Syst 35, 895–904 (2011). https://doi.org/10.1007/s10916-010-9508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9508-x

Keywords

Navigation