Abstract
In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an efficient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian–Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of our scheme.
Similar content being viewed by others
References
Demirdžić, I., Perić, M.: Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries. Int. J. Numer. Methods Fluid. 10(7), 771 (1990)
Tezduyar, T., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces-the DSD/ST procedure, I: the concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94(3), 339 (1992)
Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure, II: computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94(3), 353 (1992)
Donea, J., Huerta, A., Ponthot, J.P., Rodrguez-Ferran, A.: Arbitrary LagrangianEulerian methods. Encycl. Comput. Mech. 1, 14 (2004). https://doi.org/10.1002/0470091355.ecm009
Arcoumanis, C., Whitelaw, J.: Fluid mechanics of internal combustion engines a review. Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci. 201(1), 57 (1987)
Kuo, T.W., Yang, X., Gopalakrishnan, V., Chen, Z.: Large Eddy Simulation (les) for IC Engine Flows. Oil Gas Sci. Technol.-Rev, IFP Energies nouvelles (2012)
Schiffmann, P., Gupta, S., Reuss, D., Sick, V., Yang, X., Kuo, T.W.: TCC-III engine benchmark for large-eddy simulation of IC engine flows. Oil Gas Sci. Technol. 71(1), 3 (2016)
Rutland, C.: (2011) Large-eddy simulations for internal combustion engines–a review. Int. J. Engine Res. https://doi.org/10.11771/1468087411407248
Schmitt, M., Frouzakis, C.E., Tomboulides, A.G., Wright, Y.M., Boulouchos, K.: Direct numerical simulation of multiple cycles in a valve/piston assembly. Phys. Fluid. 26(3), 035105 (2014)
Schmitt, M., Frouzakis, C., Wright, Y., Tomboulides, A., Boulouchos, K.: Investigation of wall heat transfer and thermal stratification under engine-relevant conditions using DNS. Int. J. Engine Res. 17(1), 63 (2016)
Patera, A.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468 (1984)
Ho, L.: A Legendre spectral element method for simulation of incompressible unsteady viscous free-surface flows. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1989)
Ho, L., Maday, Y., Patera, A., Rønquist, E.: A high-order Lagrangian-decoupling method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 80, 65 (1990)
Ho, L., Patera, A.: A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows. Comput. Methods Appl. Mech. Eng. 80, 355 (1990)
Fischer, P., Schmitt, M., Tomboulides, A.: Recent developments in spectral element simulations of moving-domain problems. Fields Institute Communications: Recent Progress and Modern Challenges in Applied Mathematics, Modelling and Computational Science, Springer/Fields Institute, Berlin (2016)
Orszag, S., Israeli, M., Deville, M.: Boundary conditions for incompressible flows. J. Sci. Comput. 1, 75 (1986)
Maday, Y., Patera, A., Rønquist, E.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263 (1990)
Tomboulides, A., Israeli, M., Karniadakis, G.: Efficient removal of boundary-divergence errors in time-splitting methods. J. Sci. Comput. 4, 291 (1989)
Perot, J.: An analysis of the fractional step method. J. Comput. Phys. 108, 51 (1993)
Couzy, W.: Spectral element discretization of the unsteady Navier–Stokes equations and its iterative solution on parallel computers. Ph.D. thesis, Swiss Federal Institute of Technology-Lausanne (1995). Thesis nr. 1380
Fischer, P.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133, 84 (1997)
Fischer, P., Lottes, J.: In: Kornhuber, R., Hoppe, R., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering Series, Springer, Berlin (2004)
Lottes, J.W., Fischer, P.F.: Hybrid multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24, 45 (2005)
Tufo, H., Fischer, P.: Fast parallel direct solvers for coarse-grid problems. J. Parallel Distrib. Comput. 61, 151 (2001)
Fischer, P., Lottes, J., Pointer, W., Siegel, A.: Petascale algorithms for reactor hydrodynamics. J. Phys. Conf. Ser. 125, 012076 (2008)
Lottes, J.: Independent quality measures for symmetric AMG components. Tech. Rep. ANL/MCS-P1820-0111, Argonne National Laboratory, Argonne, IL (2011)
Boyd, J.: Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods. J. Comput. Phys. 143, 283 (1998)
Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods, Comptes rendus de l’Académie des sciences, Série I- Analyse numérique 332, 265 (2001)
Malm, J., Schlatter, P., Fischer, P., Henningson, D.: Stabilization of the spectral-element method in convection dominated flows by recovery of skew symmetry. J. Sci. Comput. 57, 254 (2013)
Tufo, H., Fischer, P.: In: Proceedigs of the ACM/IEEE SC99 Conference on High Performance Networking and Computing, Gordon Bell Prize, IEEE Computer Soc., CDROM (1999)
Deville, M., Fischer, P., Mund, E.: High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)
Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309 (1982)
Tomboulides, A., Lee, J., Orszag, S.: Numerical simulation of low Mach number reactive flows. J. Sci. Comput. 12, 139 (1997)
Fischer, P.: Projection techniques for iterative solution of \({A}{\underline{ x}} ={\underline{ b}} \) with successive right-hand sides. Comput. Methods Appl. Mech. Eng. 163, 193 (1998)
Fischer, P.: In: 22nd AIAA Computational Fluid Dynamics Conference, AIAA Aviation, AIAA 2015-3049 (2015)
Walsh, O.: In: Heywood, J., Masuda, K., Rautmann, R., Solonikkov, V. (eds.) The NSE II-Theory and Numerical Methods, pp. 306–309. Springer, Berlin (1992)
Pedley, T., Stephanoff, K.: Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves. J. Fluid Mech. 160, 337 (1985)
Ralph, M., Pedley, T.: Flow in a channel with a moving indentation. J. Fluid Mech. 190, 87 (1988)
Udaykumar, H., Mittal, R., Rampunggoon, P., Khanna, A.: A sharp interface cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174(1), 345 (2001)
Ho, L., Patera, A.: A legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows. Comput. Methods Appl. Mech. Eng. 80, 355 (1990)
Sick, V., Reuss, D., Yang, X., Kuo, T.W.: TCC-III CFD Input Dataset. https://deepblue.lib.umich.edu/handle/2027.42/108382
Masud, A., Hughes, T.J.R.: A space-time Galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Comput. Methods Appl. Mech. Eng. 146, 91 (1997)
Kanchi, H., Masud, A.: A 3d adaptive mesh moving scheme. Int. J. Numer. Methods Fluids 54, 923 (2007)
Bello-Maldonado, P., Fischer, P.: Scalable low-order finite element preconditioners for high-order spectral element poisson solvers. (2018). Submitted
Acknowledgements
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. The research also used resources of the Argonne Leadership Computing Facility, which is supported by the U.S. Department iof Energy, Office of Science, under Contract DE-AC02-06CH11357.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Patel, S., Fischer, P., Min, M. et al. A Characteristic-Based Spectral Element Method for Moving-Domain Problems. J Sci Comput 79, 564–592 (2019). https://doi.org/10.1007/s10915-018-0876-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0876-6