[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient accuracy evaluation for multi-modal sensed data

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Data accuracy is an important aspect in sensed data quality. Thus one necessary task for data quality management is to evaluate the accuracy of sensed data. However, to our best knowledge, neither measure nor effective methods for the accuracy evaluation are proposed for multi-typed sensed data. To address the problem for accuracy evaluation, we propose a systematic method. With MSE, a parameter to measure the accuracy in statistics, we design the accuracy evaluation framework for multi-modal data. Within this framework, we classify data types into three categories and develop accuracy evaluation algorithms for each category in cases of in presence and absence of true values. Extensive experimental results show the efficiency and effectiveness of our proposed framework and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balakrishnan R, Kambhampati S (2011) Sourcerank: relevance and trust assessment for deep web sources based on inter-source agreement. In: WWW, pp 227–236

  • Bertsekas Dimitri P (1999) Nonlinear programming, 2nd edn. Athena Scientific, Cambridge

    MATH  Google Scholar 

  • Cai Z, Lin G, Xue G (2005) Improved approximation algorithms for the capacitated multicast routing problem. Computing and combinatorics. Springer, Berlin, pp 136–145

    MATH  Google Scholar 

  • Cai Z, Chen Z-Z, Lin G (2008) A 3.4713-approximation algorithm for the capacitated multicast tree routing problem. Theoret Comput Sci 410(52):5415–5424

  • Cai Z, Ji S, He J, Bourgeois AG (2012) Optimal distributed data collection for asynchronous cognitive radio networks. In: IEEE 32nd international conference on distributed computing systems (ICDCS), pp 245–254. IEEE

  • Chen L, Liu Y, Li M (2007) Non-threshold based event detection for 3d environment monitoring in sensor networks. IEEE Trans Knowl Data Eng 20:1699–1711

    MathSciNet  Google Scholar 

  • Chen G, Cui S (2013) Relay node placement in two-tiered wireless sensor networks with base stations. J Comb Optim 26(3):499–508

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng X, Du D, Wang L, Xu B (2008) Relay sensor placement in wireless sensor networks. Wirel Netw 14(3):347–355

    Article  Google Scholar 

  • Cheng S, Li J (2009) Sampling based (epsilon, delta)-approximate aggregation algorithm in sensor networks. In: The 29th IEEE international conference on distributed computing systems (ICDCS), IEEE, pp 273–280

  • Cheng S, Li J, Cai Z (2013) \(o(\epsilon )\)-approximation to physical world by sensor networks. In: INFOCOM

  • Cheng S, Li J, Ren Q, Yu L (2010) Bernoulli sampling based \((\varepsilon, \delta )\)-approximate aggregation in large-scale sensor networks. In: Proceedings of the 29th conference on Information communications, IEEE Press, pp 1181–1189

  • Cheng S, Li J, Yu L (2012) Location aware peak value queries in sensor networks. In: INFOCOM, IEEE, pp 486–494

  • Cheng X, Thaeler A, Xue G, Chen D (2004) Tps: a time-based positioning scheme for outdoor wireless sensor networks. IEEE INFOCOM 2004:2685–2696

    Google Scholar 

  • Ding M, Chen D, Xing K, Cheng X (2005) Localized fault-tolerant event boundary detection in sensor networks. IEEE INFOCOM 2005:902–913

    Google Scholar 

  • Dong XL, Srivastava D (2011) Large-scale copy detection. In: SIGMOD conference, pp 1205–1208

  • Dong XL, Srivastava D (2012) Detecting clones, copying and reuse on the web. In: ICDE, pp 1211–1213

  • Dong XL, Berti-Equille L, Srivastava D (2009a) Integrating conflicting data: the role of source dependence. Proc VLDB Endow 2(1):550–561

    Article  Google Scholar 

  • Dong XL, Berti-Equille L, Srivastava D (2009b) Truth discovery and copying detection in a dynamic world. Proc VLDB Endow 2(1):562–573

    Article  Google Scholar 

  • Dong X, Berti-Equille L, Hu Y, Srivastava D (2010) Solomon: seeking the truth via copying detection. Proc VLDB Endow 3(2):1617–1620

    Article  Google Scholar 

  • Dong X, Berti-Equille L, Hu Y, Srivastava D (2010) Global detection of complex copying relationships between sources. Proc VLDB Endow 3(1):1358–1369

    Article  Google Scholar 

  • Du H, Wu W, Shan S, Kim D, Lee W (2012) Constructing weakly connected dominating set for secure clustering in distributed sensor network. J Comb Optim 23(2):301–307

    Article  MathSciNet  MATH  Google Scholar 

  • Elmagarmid AK, Ipeirotis PG, Verykios VS (2007) Duplicate record detection: a survey. IEEE Trans Knowl Data Eng 19(1):1–16

    Article  Google Scholar 

  • Florescu D, Koller D, Levy AY (1997) Using probabilistic information in data integration. In: VLDB, pp 216–225

  • Galland A, Abiteboul S, Marian A, Senellart P (2010) Corroborating information from disagreeing views. In: WSDM, pp 131–140

  • Getoor L, Machanavajjhala A (2012) Entity resolution: Theory, practice & open challenges. Proc VLDB Endow 5(12):2018–2019

    Article  Google Scholar 

  • Jindal A, Liu M (2010) Networked computing in wireless sensor networks for structural health monitoring. Network Comput Wirel Sensor Netw Struct Health Monit 2798(1):1–14

    Google Scholar 

  • Kasneci G, Van Gael J, Stern DH, Graepel T (2011) Cobayes: Bayesian knowledge corroboration with assessors of unknown areas of expertise. In: WSDM, pp 465–474

  • Kozlov MK, Tarasov SP, Khachiyan LG (1980) Polynomial solvability of convex quadratic programming. In: Doklady Akademii Nauk SSSR, p 248

  • Kumar S, Shepherd D (2001) SensIT: sensor information technology for the warfighter. In: Proceedings of the 4th international conference on information fusion, p 3C9

  • Lehmann EL, George Casella (1998) Theory of point estimation, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Li M, Liu Y, Chen L (2007) Non-threshold based event detection for 3d environment monitoring in sensor networks. In: ICDCS, p 9

  • Li X, Meng W, Yu CT (2011) T-verifier: verifying truthfulness of fact statements. In: ICDE, pp 63–74

  • Li M, Liu Q, Wang J, Zhao Y (2012) Dispatching design for storage-centric wireless sensor networks. J Comb Optim 24(4):485–507

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Zhu Q, Du H, Li J (2014a) An improved distributed data aggregation scheduling in wireless sensor networks. J Comb Optim 27(2):221–240

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Cheng S, Gao H, Cai Z (2014b) Approximate physical world reconstruction algorithms in sensor networks. In: IEEE transactions on parallel and distributed systems

  • Li J, Cheng S, Gao H, Cai Z (2014c) Approximate physical world reconstruction algorithms in sensor networks. In: IEEE transactions on parallel and distributed systems

  • Liu K, Li M, Liu Y, Li X-Y, Li M, Ma H (2010) Exploring the hidden connectivity in urban vehicular networks. In: ICNP, pp 243–252

  • Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, London

    MATH  Google Scholar 

  • Navarro G, Raffinot M (2002) Flexible pattern matching in strings–practical on-line search algorithms for texts and biological sequences. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Pasternack J, Roth D (2011) Making better informed trust decisions with generalized fact-finding. In: IJCAI, pp 2324–2329

  • Peterson D, Gao S, Malhotra A, Sperberg-McQueen CM, Henry S (2010) Xml schema 1.1. http://www.w3.org/XML/Schema

  • Ren Z, Zhou G, Pyles AJ, Keally M, Mao W, Wang H (2011) Bodyt2: throughput and time delay performance assurance for heterogeneous bsns. In: INFOCOM, pp 2750–2758

  • Wang D, Kaplan L, Abdelzaher T, Aggarwal C (2011) On quantifying the accuracy of maximum likelihood estimation of participant reliability in social sensing. In: DMSN

  • Zeinalipour-Yazti D, Vagena Z, Gunopulos D, Kalogeraki V, Tsotras V, Vlachos M, Koudas N, Srivastava D (2005) The threshold join algorithm for top-k queries in distributed sensor networks. In: Proceedings of the 2nd international workshop on Data management for sensor networks. ACM, pp 61–66

  • Zhang Y, Wang H (2014) Accuracy evaluation for sensed data. In: WASA, pp 205–214

  • Zhao B, Rubinstein BIP, Gemmell J, Han J (2012) A Bayesian approach to discovering truth from conflicting sources for data integration. Proc VLDB Endow 5(6):550–561

    Article  Google Scholar 

  • Zhou Y, Chen X, Lyu MR, Liu J (2010) Sentomist: unveiling transient sensor network bugs via symptom mining. In: IEEE 30th international conference on distributed computing systems (ICDCS), IEEE, pp 784–794

Download references

Acknowledgments

This paper was partially supported by NGFR 973 Grant 2012CB316200 and NSFC Grant 61472099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, H., Gao, H. et al. Efficient accuracy evaluation for multi-modal sensed data. J Comb Optim 32, 1068–1088 (2016). https://doi.org/10.1007/s10878-015-9920-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-015-9920-8

Keywords

Navigation