[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The online \(k\)-server problem with max-distance objective

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper studies the online \(k\)-server problem with max-distance objective, i.e. minimizing the maximum distance moved among all the servers. For this objective, we prove that no deterministic online algorithm has a competitive ratio better than \(k\). We also analyze several classical algorithms for two special cases and show that some algorithms do have a competitive ratio of \(k\) and hence optimal. Consequently, we conjecture that any metric space allows for a deterministic \(k\)-competitive \(k\)-server algorithm with max-distance objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartal Y, Koutsoupias E (2004) On the competitive ratio of the work function algorithm for the \(k\)-server problem. Theor Comput Sci 324:337–345

    Article  MATH  MathSciNet  Google Scholar 

  • Bein WW, Chrobak M, Larmore LL (2002) The 3-server problem in the plane. Theor Comput Sci 289: 335–354

    Article  MATH  MathSciNet  Google Scholar 

  • Borodin A, EI-Yaniv R (1998) Online computation and competitive analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Chrobak M, Larmore LL (1991) An optimal on-line algorithm for \(k\) severs on trees. SIAM J Comput 20:144–148

    Article  MATH  MathSciNet  Google Scholar 

  • Chrobak M, Larmore LL (1992) The server problem and on-line games. DIMAGS Ser Discrete Math Theor Comput Sci 7:11–64

    MathSciNet  Google Scholar 

  • Chrobak M, Karloff J, Payne TH, Vishwanathan S (1991) New results on server problems. SIAM J Discrete Math 4:172–181

    Article  MATH  MathSciNet  Google Scholar 

  • Kleinberg MJ (1990) A lower bound for two-server balancing algorithms. Inf Process Lett 52:39–43

    Article  Google Scholar 

  • Koutsoupias E (2009) The \(k\)-server problem. Comput Sci Rev 3:105–118

    Article  MATH  Google Scholar 

  • Koutsoupias E, Papadimitriou C (1994) On the \(k\)-server conjecture. In: Proceedings of the 26th Symposium on Theory of Computing, STOC, ACM, pp 507–511

  • Koutsoupias E, Papadimitriou C (1996) The 2-evader problem. Inf Process Lett 57:249–252

    Article  MATH  MathSciNet  Google Scholar 

  • Lipmann M (2003) Online routing. Technische Universiteit Eindhoven, Eindhoven

  • Manasse SM, McGeoch AL, Sleator DD (1990) Competitive algorithms for server problems. J Algorithms 11:208–230

    Article  MATH  MathSciNet  Google Scholar 

  • Sleator DD, Tarjan ER (1985) Amortized efficiency of list update and paging rules. Commun ACM 28: 202–208

    Article  MathSciNet  Google Scholar 

  • Vinvenzo B, Leen S (2009) Online \(k\)-server routing problems. Theory Comput Syst 45:470–485

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grants 71071123, 61221063, 71172197 and 71131006 and Program for Changjiang Scholars and Innovative Research Team in University under Grant IRT1173 and Central University Fund of Sichuan University under Grant skgt201202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinfeng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Li, H., He, C. et al. The online \(k\)-server problem with max-distance objective. J Comb Optim 29, 836–846 (2015). https://doi.org/10.1007/s10878-013-9621-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-013-9621-0

Keywords

Navigation