Abstract
In this paper, first, a new approach is proposed for derivation of bound estimation laws for robust control of robot manipulators. In this approach, functions depending on robot kinematics and control parameters and integration techniques can be used for derivation of the bound estimation laws based on the Lyapunov theory, thus, stability of the uncertain system is guaranteed. Five new bound estimation laws are proposed, and in this derivations, five novel functions depending on robot kinematics and control parameters and proper integration techniques, such as substitution method, integration by part and integration by partial fractions are used. Then, four new robust control inputs are proposed based on each derived bound estimation law. Lyapunov theory based on Corless and Leitmann (IEEE Trans Automat Contr 26:1139–1144, 1981) approach is used for designing the robust control input achieving uniform boundedness error convergence. This study also allows derivation of other bound estimation laws for robust controllers provided that appropriate novel functions and proper integration techniques are chosen.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdullah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robot control for rigid robots. IEEE Control Syst. Mag. 11(2), 24–30 (1991)
Bekit, B.W., Whidborne, J.F., Seneviratne, L.D.: Smooth robust control or robot manipulators. In: Proceedings of Mechatronics, vol. 98, pp. 275–280. Elsevier Science Ltd. (1998)
Burkan, R.: Upper bounding estimation for robustness to the parameter uncertainty with trigonometric function in trajectory control of robot arms. J. Intell. Robot. Syst. 46, 263–283 (2006)
Burkan, R., Uzmay, I.: Upper bounding estimation for robustness to the parameter uncertainty in trajectory control of robot arm. Robot. Auton. Syst. 45, 99–110 (2003)
Burkan, R., Uzmay, I.: Logarithmic based robust approach to parametric uncertainty for control of robot manipulators. Int. J. Robust Nonlinear Control 15, 427–436 (2005)
Canudas De Wit, C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer, London (1996)
Corless, M., Leitmann, G.: Continuous feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Automat. Contr. 26, 1139–1144 (1981)
Corless, M.: Tracking controllers for uncertain systems: applications to a Manutec R3 robot. J. Dyn. Syst. Meas. Control 111, 609–618 (1989)
Dawson, D.M., Qu, Z., Duffie, J.: Robust tracking control for robot manipulators: theory, simulation and implementation. Robotica 11, 201–208 (1993)
Jaritz, A., Spong, M.W.: An experimental comparison of robust control algorithms on a direct drive manipulators. IEEE Trans. Control Syst. Technol. 4(6), 627–640 (1996)
Koo, K.M., Kim, J.H.: Robust control of robot manipulators with parametric uncertainty. IEEE Trans. Automat. Contr. 39(6), 1230–1233 (1994)
Leitmann, G.: On the efficiency of nonlinear control in uncertain linear system. J. Dyn. Syst. Meas. Control 102, 95–102 (1981)
Liu, G., Goldenberg, A.A.: On robust saturation control of robot manipulators. In: Proceedings of the 32nd Conference on Decision and Control, San Antonio, TX, pp. 2115–2120 (1993)
Liu, G., Goldenberg, A.A.: Uncertainty decomposition-based robust control of robot manipulators. IEEE Trans. Control Syst. Technol. 4, 384–393 (1996)
Liu, G., Goldenberg, A.A.: Comparative study of robust saturation-based control of robot manipulators: analysis and experiments. Int. J. Robot. Res. 15, 473–491 (1996)
Liu, G., Goldenberg, A.A.: Robust control of robot manipulators based on dynamics decomposition. IEEE Trans. Robot. Autom. 13, 783–789 (1997)
Mnif, F., Boukas, E.K., Saad, M.: Robust control for constrained robot manipulators. J. Dyn. Syst. Meas. Control 121, 129–133 (1999)
Sage, H.G., De Mathelin, M.F., Ostretag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72(16), 1498–1522 (1999)
Slotine, J.E.: The robust control of robot manipulators. Int. J. Robot. Res. 4, 49–63 (1985)
Slotine, J.E., Li, W.: On the adaptive control of robotic manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)
Spong, M.W.: On the robust control of robot manipulators. IEEE Trans. Automat. Contr. 37, 1782–1786 (1992)
Spong, M.W., Vidyasagar, M.: Robust linear compensator design for nonlinear robotic control. IEEE J. Robot. Autom. 3(4), 345–350 (1987)
Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2006)
Tang, Y., Tomizuka, M., Guerrero, G.: Robust control of rigid robots. In: Proceedings of the 36th Conference on Decision and Control, San Diego, pp. 791–796 (1997)
Tang, Y., Tomizuka, M., Guerrero, G., Montemayor, G.: Decentralized robust control of mechanical systems. IEEE Trans. Automat. Contr. 45(4), 771–776 (2000)
Yaz, E.: Comments on the robust control of robot manipulators. IEEE Trans. Automat. Contr. 38(38), 511–512 (1993)
Zenieh, S., Corless, M.: Simple robust tracking controllers for robotic manipulators. In: Proceedings of SYROCO’94, Capari, Italy, pp. 193–198 (1994)
Zenieh, S., Corless, M.: A simple robust r-α tracking controllers for uncertain fully-actuated mechanical systems. J. Dyn. Syst. Meas. Control 119, 821–825 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Burkan, R. Modelling of Bound Estimation Laws and Robust Controllers for Robustness to Parametric Uncertainty for Control of Robot Manipulators. J Intell Robot Syst 60, 365–394 (2010). https://doi.org/10.1007/s10846-010-9424-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-010-9424-9