[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

High affinity ligands for a given target tend to share key molecular interactions with important anchoring amino acids and therefore often present quite conserved interaction patterns. This simple concept was formalized in a topological knowledge-based scoring function (GRIM) for selecting the most appropriate docking poses from previously X-rayed interaction patterns. GRIM first converts protein–ligand atomic coordinates (docking poses) into a simple 3D graph describing the corresponding interaction pattern. In a second step, proposed graphs are compared to that found from template structures in the Protein Data Bank. Last, all docking poses are rescored according to an empirical score (GRIMscore) accounting for overlap of maximum common subgraphs. Taking the opportunity of the public D3R Grand Challenge 2015, GRIM was used to rescore docking poses for 36 ligands (6 HSP90α inhibitors, 30 MAP4K4 inhibitors) prior to the release of the corresponding protein–ligand X-ray structures. When applied to the HSP90α dataset, for which many protein–ligand X-ray structures are already available, GRIM provided very high quality solutions (mean rmsd = 1.06 Å, n = 6) as top-ranked poses, and significantly outperformed a state-of-the-art scoring function. In the case of MAP4K4 inhibitors, for which preexisting 3D knowledge is scarce and chemical diversity is much larger, the accuracy of GRIM poses decays (mean rmsd = 3.18 Å, n = 30) although GRIM still outperforms an energy-based scoring function. GRIM rescoring appears to be quite robust with comparison to the other approaches competing for the same challenge (42 submissions for the HSP90 dataset, 27 for the MAP4K4 dataset) as it ranked 3rd and 2nd respectively, for the two investigated datasets. The rescoring method is quite simple to implement, independent on a docking engine, and applicable to any target for which at least one holo X-ray structure is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen YC (2015) Beware of docking! Trends Pharmacol Sci 36:78–95

    Article  Google Scholar 

  2. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule–ligand interactions. J Mol Biol 161:269–288

    Article  CAS  Google Scholar 

  3. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7–26

    CAS  Google Scholar 

  4. Yuriev E, Holien J, Ramsland PA (2015) Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. J Mol Recognit 28:581–604

    Article  CAS  Google Scholar 

  5. Sousa SF, Ribeiro AJ, Coimbra JT, Neves RP, Martins SA, Moorthy NS, Fernandes PA, Ramos MJ (2013) Protein–ligand docking in the new millennium—a retrospective of 10 years in the field. Curr Med Chem 20:2296–2314

    Article  CAS  Google Scholar 

  6. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373

    Article  CAS  Google Scholar 

  7. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225–242

    Article  CAS  Google Scholar 

  8. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

  9. Smith RD, Damm-Ganamet KL, Dunbar JB Jr, Ahmed A, Chinnaswamy K, Delproposto JE, Kubish GM, Tinberg CE, Khare SD, Dou J, Doyle L, Stuckey JA, Baker D, Carlson HA (2016) CSAR benchmark exercise 2013: evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge. J Chem Inf Model 56:1022–1031

    Article  CAS  Google Scholar 

  10. Damm-Ganamet KL, Smith RD, Dunbar JB Jr, Stuckey JA, Carlson HA (2013) CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series. J Chem Inf Model 53:1853–1870

    Article  CAS  Google Scholar 

  11. Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755

    Article  CAS  Google Scholar 

  12. Li Y, Han L, Liu Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 54:1717–1736

    Article  CAS  Google Scholar 

  13. Novikov FN, Zeifman AA, Stroganov OV, Stroylov VS, Kulkov V, Chilov GG (2011) CSAR scoring challenge reveals the need for new concepts in estimating protein–ligand binding affinity. J Chem Inf Model 51:2090–2096

    Article  CAS  Google Scholar 

  14. Wang JC, Lin JH (2013) Scoring functions for prediction of protein–ligand interactions. Curr Pharm Des 19:2174–2182

    Article  CAS  Google Scholar 

  15. Virtanen SI, Niinivehmas SP, Pentikainen OT (2015) Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening. J Mol Graph Model 62:303–318

    Article  CAS  Google Scholar 

  16. Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48:4040–4048

    Article  CAS  Google Scholar 

  17. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  CAS  Google Scholar 

  18. Li L, Wang B, Meroueh SO (2011) Support vector regression scoring of receptor–ligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 51:2132–2138

    Article  CAS  Google Scholar 

  19. Zilian D, Sotriffer CA (2013) SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein–ligand complexes. J Chem Inf Model 53:1923–1933

    Article  CAS  Google Scholar 

  20. Ballester PJ, Schreyer A, Blundell TL (2014) Does a more precise chemical description of protein–ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model 54:944–955

    Article  CAS  Google Scholar 

  21. Khamis MA, Gomaa W, Ahmed WF (2015) Machine learning in computational docking. Artif Intell Med 63:135–152

    Article  Google Scholar 

  22. Gabel J, Desaphy J, Rognan D (2014) Beware of machine learning-based scoring functions-on the danger of developing black boxes. J Chem Inf Model 54:2807–2815

    Article  CAS  Google Scholar 

  23. Hindle SA, Rarey M, Buning C, Lengauer T (2002) Flexible docking under pharmacophore type constraints. J Comput Aided Mol Des 16:129–149

    Article  CAS  Google Scholar 

  24. Kelley BP, Brown SP, Warren GL, Muchmore SW (2015) POSIT: flexible shape-guided docking for pose prediction. J Chem Inf Model 55:1771–1780

    Article  CAS  Google Scholar 

  25. Kumar A, Zhang KY (2016) Application of shape similarity in pose selection and virtual screening in CSARdock2014 exercise. J Chem Inf Model 56:965–973

    Article  CAS  Google Scholar 

  26. Gao C, Thorsteinson N, Watson I, Wang J, Vieth M (2015) Knowledge-based strategy to improve ligand pose prediction accuracy for lead optimization. J Chem Inf Model 55:1460–1468

    Article  CAS  Google Scholar 

  27. Deng Z, Chuaqui C, Singh J (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein–ligand binding interactions. J Med Chem 47:337–344

    Article  CAS  Google Scholar 

  28. Anighoro A, Bajorath J (2016) Three-dimensional similarity in molecular docking: prioritizing ligand poses on the basis of experimental binding modes. J Chem Inf Model 56:580–587

    Article  CAS  Google Scholar 

  29. Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47:195–207

    Article  CAS  Google Scholar 

  30. Kelly MD, Mancera RL (2004) Expanded interaction fingerprint method for analyzing ligand binding modes in docking and structure-based drug design. J Chem Inf Comput Sci 44:1942–1951

    Article  CAS  Google Scholar 

  31. Mpamhanga CP, Chen B, McLay IM, Willett P (2006) Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions. J Chem Inf Model 46:686–698

    Article  CAS  Google Scholar 

  32. Chalopin M, Tesse A, Martinez MC, Rognan D, Arnal JF, Andriantsitohaina R (2010) Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS ONE 5:e8554

    Article  Google Scholar 

  33. Venhorst J, Nunez S, Terpstra JW, Kruse CG (2008) Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints. J Med Chem 51:3222–3229

    Article  CAS  Google Scholar 

  34. de Graaf C, Rein C, Piwnica D, Giordanetto F, Rognan D (2011) Structure-based discovery of allosteric modulators of two related class B G-protein-coupled receptors. ChemMedChem 6:2159–2169

    Article  Google Scholar 

  35. de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, Iwata S, Shimamura T, Stevens RC, de Esch IJ, Leurs R (2011) Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J Med Chem 54:8195–8206

    Article  Google Scholar 

  36. Desaphy J, Raimbaud E, Ducrot P, Rognan D (2013) Encoding protein–ligand interaction patterns in fingerprints and graphs. J Chem Inf Model 53:623–637

    Article  CAS  Google Scholar 

  37. Desaphy J, Bret G, Rognan D, Kellenberger E (2015) sc-PDB: a 3D-database of ligandable binding sites—10 years on. Nucleic Acids Res 43:D399–D404

    Article  Google Scholar 

  38. Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16:575–577

    Article  Google Scholar 

  39. Johnston HC (1976) Cliques of a graph—variations on the Bron–Kerbosch algorithm. Int J Parallel Prog 5:209–238

    Google Scholar 

  40. Theobald DL (2005) Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallogr A 61:478–480

    Article  Google Scholar 

  41. Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281–306

    Article  CAS  Google Scholar 

  42. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  Google Scholar 

  43. Drug Design Data Resource. https://drugdesigndata.org/about/grand-challenge-2015

  44. Bietz S, Urbaczek S, Schulz B, Rarey M (2014) Protoss: a holistic approach to predict tautomers and protonation states in protein–ligand complexes. J Cheminform 6:12

    Article  Google Scholar 

  45. Tripos International, St. Louis, MO 63144–2319, USA

  46. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  47. UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212

    Article  Google Scholar 

  48. Molecular Networks GmbH, Erlangen, Germany

  49. Kung PP, Sinnema PJ, Richardson P, Hickey MJ, Gajiwala KS, Wang F, Huang B, McClellan G, Wang J, Maegley K, Bergqvist S, Mehta PP, Kania R (2011) Design strategies to target crystallographic waters applied to the Hsp90 molecular chaperone. Bioorg Med Chem Lett 21:3557–3562

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the LABEX ANR-10-LABX-0034 Medalis for a post-doctoral fellowship to I.S. We also acknowledge the National Center for Scientific Research (CNRS, Institut de Chimie) and the Alsace Region for a doctoral fellowship to FDS. The High-performance Computing Center (University of Strasbourg, France) and the Calculation Center of the IN2P3 (CNRS, Villeurbanne, France) are acknowledged for allocation of computing time and excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Rognan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slynko, I., Da Silva, F., Bret, G. et al. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015. J Comput Aided Mol Des 30, 669–683 (2016). https://doi.org/10.1007/s10822-016-9930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9930-3

Keywords

Navigation