[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Infragranular layers lead information flow during slow oscillations according to information directionality indicators

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The recurrent circuitry of the cerebral cortex generates an emergent pattern of activity that is organized into rhythmic periods of firing and silence referred to as slow oscillations (ca 1 Hz). Slow oscillations not only are dominant during slow wave sleep and deep anesthesia, but also can be generated by the isolated cortical network in vitro, being a sort of default activity of the cortical network. The cortex is densely and reciprocally connected with subcortical structures and, as a result, the slow oscillations in situ are the result of an interplay between cortex and thalamus. Due to this reciprocal connectivity and interplay, the mechanism responsible for the initiation of waves in the corticothalamocortical loop during slow oscillations is still a matter of debate. It was our objective to determine the directionality of the information flow between different layers of the cortex and the connected thalamus during spontaneous activity. With that purpose we obtained multilayer local field potentials from the rat visual cortex and from its connected thalamus, the lateral geniculate nucleus, during deep anaesthesia. We analyzed directionality of information flow between thalamus, cortical infragranular layers (5 and 6) and supragranular layers (2/3) by means of three information theoretical indicators: transfer entropy, symbolic transfer entropy and transcript mutual information. These three indicators coincided in finding that infragranular layers lead the information flow during slow oscillations both towards supragranular layers and towards the thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amigó, J.M. (2010). Permutation complexity in dynamical systems - ordinal patterns, permutation entropy, and all that. Heidelberg: Springer Verlag.

    Book  Google Scholar 

  • Amigó, J.M. (2012). The equality of kolmogorov-sinai entropy and metric permutation entropy generalized. Physica D, 241, 789–793.

    Article  Google Scholar 

  • Amigó, J.M., Szczepanski, J., Wajnryb, E., & Sanchez-Vives, M.V. (2004). Estimating the entropy rate of spike trains via lempel-ziv complexity. Neural Computation, 16(4), 717–36.

    Article  PubMed  Google Scholar 

  • Amigó, J.M., Zambrano, S., & Sanjuán, M.A.F. (2008). Combinatorial detection of determinism in noisy time series. Europhysics Letters, 83, 60005.

    Article  Google Scholar 

  • Amigó, J.M., Monetti, R., Aschenbrenner, T., & Bunk, W. (2012). Transcripts: An algebraic approach to coupled time series. Chaos, 22, 013105.

    Article  PubMed  Google Scholar 

  • Amigó, J.M., Aschenbrenner, T., Bunk, W., & Monetti, R. (2014). Dimensional reduction of conditional algebraic multi-information via transcripts. Information Sciences, 278, 298–310.

    Article  Google Scholar 

  • Arnold, M.M., Szczepanski, J., Montejo, N., Amigó, J.M., Wajnryb, E., & Sanchez-Vives, M.V. (2013). Information content in cortical spike trains during brain state transitions. Journal of Sleep Research, 22, 13–21.

    Article  PubMed  Google Scholar 

  • Beltramo, R., D’Urso, G., Dal Maschio, M., Farisello, P., Bovetti, S., Clovis, Y., Lassi, G., Tucci, V., De Pietri Tonelli, D., & Fellin, T. (2013). Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nature Neuroscience, 16(2), 227–34.

    Article  CAS  PubMed  Google Scholar 

  • Besserve, M., Schölkopf, B., Logothetis, N., & Panzeri, S. (2010). Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. Journal of Computational Neuroscience, 29(3), 547–566.

    Article  PubMed Central  PubMed  Google Scholar 

  • Borst, A., & Theunissen, F.E. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947–957.

    Article  CAS  PubMed  Google Scholar 

  • Chauvette, S., Volgushev, M., & Timofeev, I. (2010). Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex, 20(11), 2660–74.

    Article  PubMed Central  PubMed  Google Scholar 

  • Compte, A., Sanchez-Vives, M.V., McCormick, D.A., & Wang, X.J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89(5), 2707–25.

    Article  PubMed  Google Scholar 

  • Crunelli, V., & Hughes, S.W. (2010). The slow (<1 hz) rhythm of non-rem sleep: a dialogue between three cardinal oscillators. Nature Neuroscience, 13(1), 9–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crunelli, V., David, F., Lőrincz, M.L., & Hughes, S.W. (2015). The thalamocortical network as a single slow wave-generating unit. Current opinion in neurobiology, 31, 72–80.

    Article  CAS  PubMed  Google Scholar 

  • David, F., Schmiedt, J.T., Taylor, H.L., Orban, G., Di Giovanni, G., Uebele, V.N., Renger, J.J., Lambert, R.C., Leresche, N., & Crunelli, V. (2013). Essential thalamic contribution to slow waves of natural sleep. Journal of Neuroscience, 33(50), 19599–610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gourévitch, B., & Eggermont, J.J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.

    Article  PubMed  Google Scholar 

  • Granger, C.W.J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometricai, 37(3), 424–438.

    Article  Google Scholar 

  • Kantz, H., & Schreiber, T. (2000). Nonlinear Time Series Analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lemieux, M., Chen, J.Y., Lonjers, P., Bazhenov, M., & Timofeev, I. (2014). The impact of cortical deafferentation on the neocortical slow oscillation. The Journal of Neuroscience, 34(16), 5689–5703.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma, C., Pan, X., Wang, R., & Sakagami, M. (2013). Estimating causal interaction between prefrontal cortex and striatum by transfer entropy. Cognitive Neurodynamics, 7(3), 253–261.

    Article  PubMed Central  PubMed  Google Scholar 

  • MacKay, D., & McCulloch, W.S. (1952). The limiting information capacity of a neuronal link. Bulletin of Mathematical Biophysics, 14, 127–135.

    Article  Google Scholar 

  • Mattia, M., & Sanchez-Vives, M.V. (2012). Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity. Cognitive Neurodynamics, 6(3), 239–50.

    Article  PubMed Central  PubMed  Google Scholar 

  • McCormick, Y., Shu, DAnd, Hasenstaub, A., Sanchez-Vives, M.V., Badoual, M., & Bal, T. (2003). Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex, 13(11), 1219–31.

    Article  PubMed  Google Scholar 

  • Monetti, R., Bunk, W., Aschenbrenner, T., & Jamitzky, F. (2009). Characterizing synchronization in time series using information measures extracted from symbolic representations. Physical Review E, 79, 046207.

    Article  Google Scholar 

  • Monetti, R., Amigó, J.M., Aschenbrenner, T., & Bunk, W. (2013a). Permutation complexity of interacting dynamical systems. European Physical Journal Special Topics, 222, 421–436.

    Article  Google Scholar 

  • Monetti, R., Bunk, W., Aschenbrenner, T., Springer, S., & Amigó, J.M. (2013b). Information directionality in coupled time series using transcripts. Physical Review E, 88(022911).

  • Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15, 1191–1253.

    Article  Google Scholar 

  • Paxinos, G., & Watson, C. (2004). The rat brain in stereotaxic coordinates. London: Elsevier Academic.

    Google Scholar 

  • Peters, A., Kara, D.A., & Harriman, K.M. (1985). The neuronal composition of area 17 of rat visual cortex: Numerical considerations. The Journal Of Comparative Neurology, 238, 263– 274.

    Article  CAS  PubMed  Google Scholar 

  • Rigas, P., & Castro-Alamancos, M.A. (2007). Thalamocortical up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity. Journal Neuroscience, 27(16), 4261– 4272.

    Article  CAS  Google Scholar 

  • Roux, F., Wibral, M., Singer, W., Aru, J., & Uhlhaas, P.J. (2013). The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state meg recordings. Journal Neuroscience, 33(45), 17827–17835.

    Article  CAS  Google Scholar 

  • Sakata, S., & Harris, K.D. (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64(3), 404–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Vives, M.V., & Mattia, M. (2014). Slow wave activity as the default mode of the cerebral cortex. Archives italiennes de biologie, 152(2/3), 147-155.

  • Sanchez-Vives, M.V., & McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 1027–34.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vives, M.V., Descalzo, V.F., Reig, R., Figueroa, N.A., Compte, A., & Gallego, R. (2008). Rhythmic spontaneous activity in the piriform cortex. Cerebral Cortex, 18(5), 1179– 1192.

    Article  PubMed  Google Scholar 

  • Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461–464.

    Article  CAS  PubMed  Google Scholar 

  • Staniek, M., & Lehnertz, K. (2008). Symbolic transfer entropy. Physical Review Letters, 100, 158101.

    Article  PubMed  Google Scholar 

  • Steriade, M., Nuñez, A., & Amzica, F. (1993a). Intracellular analysis of relations between the slow (<1 hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal Neuroscience, 13(8), 3266–83.

    CAS  Google Scholar 

  • Steriade, M., Contreras, D., Curró Dossi, R., & Nuñez, A. (1993b). The slow (< 1 hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. Journal Neuroscience, 13(8), 3284–99.

    CAS  Google Scholar 

  • Stroh, A., Adelsberger, H., Groh, A., Rühlmann, C., Fischer, S., Schierloh, A., Deisseroth, K., & Konnerth, A (2013). Making waves: Initiation and propagation of corticothalamic C a 2+ waves in vivo. Neuron, 77(6), 1136–1150.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., & Steriade, M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Journal of Neurophysiology, 76(6), 4152–4168. ISSN 0022-3077.

    CAS  PubMed  Google Scholar 

  • Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T.J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10(12), 1185–1199.

    Article  CAS  PubMed  Google Scholar 

  • Wester, J.C., & Contreras, D. (2012). Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. The Journal of Neuroscience, 32(16), 5454–5471.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiener, N. (1956). Modern mathematics for the engineer. In Beckenbach, E.F. (Ed.) New York: McGraw-Hill.

Download references

Acknowledgements

We thank Thomas Aschenbrenner and Wolfram Bunk from Complex Systems Consulting (CSYSC) for their contribution to the development of the code. This work was financially supported by the Spanish Ministerio de Economia y Competitividad, grants MTM2012-31698 to J.M. Amigó and BFU2011- 27094 to M.V. Sanchez-Vives, and by the EU PF7 FET CORTICONIC, contract 600806 to M.V. Sanchez-Vives.

Conflict of interests

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sanchez-Vives.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amigó, J.M., Monetti, R., Tort-Colet, N. et al. Infragranular layers lead information flow during slow oscillations according to information directionality indicators. J Comput Neurosci 39, 53–62 (2015). https://doi.org/10.1007/s10827-015-0563-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-015-0563-7

Keywords

Navigation