[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275, 220–224.

    Article  CAS  PubMed  Google Scholar 

  • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Bao, S., Chang, E. F., Davis, J. D., Gobeske, K. T., & Merzenich, M. M. (2003). Progressive degradation and subsequent refinement of acoustic representations in the adult auditory cortex. Journal of Neuroscience, 23, 10765–10775.

    CAS  PubMed  Google Scholar 

  • Bart, E., Bao, S., & Holcman, D. (2005). Modeling the spontaneous activity of the auditory cortex. Journal of Computational Neuroscience, 19, 357–378.

    Article  CAS  PubMed  Google Scholar 

  • Benda, J., & Herz, A. V. M. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15, 2523–2564.

    Article  PubMed  Google Scholar 

  • Benucci, A., Frazor, R. A., & Carandini, M. (2007). Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron, 55, 103–117.

    Article  CAS  PubMed  Google Scholar 

  • Buszaki, G. (2006). Rhythms of the brain. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Buszaki, G., & Draguhn, A. (2004). Neuronal oscillation in cortical networks. Science, 304, 1926–1929.

    Article  Google Scholar 

  • Chervin, R. D., Pierce, P. A., & Connors, B. W. (1988). Periodicity and directionality in the propagation of epileptiform discharges across neocortex. Journal of Neurophysiology, 60, 1695–1713.

    CAS  PubMed  Google Scholar 

  • Delaney, K., Gelperin, A., Fee, M., Flores, J., Gervais, R., & Tank, D. (1994). Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proceedings of the National Academy of Sciences of the United States of America, 91, 669–73.

    Article  CAS  PubMed  Google Scholar 

  • Dudek, F. E., & Spitz, M. (1997). Hypothetical mechanisms for the cellular and neurophysiological basis of secondary epileptogenesis: Proposed role for synaptic reorganization. Journal of Clinical Neurophysiology, 14, 90–101.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, G. B. (1998). Linearization of f-I curves by adaptation. Neural Computation, 10, 1721–1729.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, G. B., & Kleinfeld, D. (2001). Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron, 29, 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Folias, S. E., & Bressloff, P. C. (2004). Breathing pulses in an excitatory neural network. SIAM Journal on Applied Dynamical Systems, 3, 378–407.

    Article  Google Scholar 

  • Folias, S. E., & Bressloff, P. C. (2005a). Breathers in two-dimensional neural media. Physical Review Letters, 95, 208107.

    Article  CAS  PubMed  Google Scholar 

  • Folias, S. E., & Bressloff, P. C. (2005b). Stimulus-locked traveling waves and breathers in an excitatory neural network. SIAM journal on Applied Mathematics, 65, 2067–2092.

    Article  Google Scholar 

  • Fung, C. C. A., Wong, K. Y. M., & Wu, S. (2008). Dynamics of neural networks with continuous attractors. EPL, 84, 18002.

    Article  Google Scholar 

  • Guo, Y., & Chow, C. C. (2005a). Existence and stability of standing pulses in neural networks: I. Existence. SIAM Journal on Applied Dynamical Systems, 4, 217–248.

    Article  Google Scholar 

  • Guo, Y., & Chow, C. C. (2005b). Existence and stability of standing pulses in neural networks: II. Stability. SIAM Journal on Applied Dynamical Systems, 4, 249–281.

    Article  Google Scholar 

  • Han, F., Caporale, N., & Dan, Y. (2008). Reverberation of recent visual experience in spontaneous cortical waves. Neuron, 60, 321–327.

    Article  CAS  PubMed  Google Scholar 

  • Hansel, D., & Sompolinsky, H. (2001). Methods in neuronal modeling. In Modeling feature selectivity in local cortical circuits (2nd Ed., ch. 13, pp. 499–568). Cambridge: MIT.

    Google Scholar 

  • Holcman, D., & Tsodyks, M. (2006). The emergence of Up and Down states in cortical networks. PLoS Computational Biology, 2, 174–181.

    Article  Google Scholar 

  • Huang, X., Troy, W. C., Yang, Q., Ma, H., Laing, C. R., Schiff, S. J., et al. (2004). Spiral waves in disinhibited mammalian neocortex. Journal of Neuroscience, 24, 9897–9902.

    Article  CAS  PubMed  Google Scholar 

  • Hutt, A., Longtin, A., & Schimansky-Geier, L. (2008). Additive noise-induces Turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation. Physica D, 237, 755–773.

    Article  Google Scholar 

  • Jung, P., & Mayer-Kress, G. (1995). Spatiotemporal stochastic resonance in excitable media. Physical Review Letters, 74, 2130–2133.

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2009). Effects of adaptation and synaptic depression on spatiotemporal dynamics of an excitatory neuronal network. Physica D. doi:10.1016/j.physd.2009.06.003.

    Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.

    Article  CAS  PubMed  Google Scholar 

  • Laing, C. R. (2005). Spiral waves in nonlocal equations. SIAM Journal on Applied Dynamical Systems, 4, 588–606.

    Article  Google Scholar 

  • Laing, C. R., Frewen, T. A., & Kevrekidis, I. G. (2007). Coarse-grained dynamics of an activity bump in a neural field model. Nonlinearity, 20, 2127–2146.

    Article  Google Scholar 

  • Laing, C. R., & Troy, W. C. (2003). PDE methods for nonlocal models. SIAM Journal on Applied Dynamical Systems, 2, 487–516.

    Article  Google Scholar 

  • Lakatos, P., Chen, C. M., O’Connell, M. N., Mills, A., & Schroeder, C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53, 279–292.

    Article  CAS  PubMed  Google Scholar 

  • Lam, Y. W., Cohen, L. B., Wachowiak, M., & Zochowski, M. R. (2000). Odors elicit three different oscillations in the turtle olfactory bulb. Journal of Neuroscience, 20, 749–62.

    CAS  PubMed  Google Scholar 

  • Lee, U., Kim, S., & Jung, K. Y. (2006). Classification of epilepsy types through global network analysis of scalp electroencephalograms. Physical Review E, 73, 041920.

    Article  Google Scholar 

  • Linder, B., Garcia-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Physics Reports, 393, 321–424.

    Article  Google Scholar 

  • Matveev, V., & Wang, X. J. (2000). Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: A computational study. Journal of Neuroscience, 20, 1575–1588.

    CAS  PubMed  Google Scholar 

  • McNamara, J. O. (1994). Cellular and molecular basis of epilepsy. Journal of Neuroscience, 14, 3412–3425.

    Google Scholar 

  • Melamed, O., Barak, O., Silberberg, G., Markram, H., & Tsodyks, M. (2008). Slow oscillations in neural networks with facilitating synapses, Journal of Computational Neuroscience, 25, 308–316.

    Article  PubMed  Google Scholar 

  • Milton, J., & Jung, P. (2003). Epilepsy as a dynamic disease. Berlin: Springer.

    Google Scholar 

  • Milton, J. G., Chu, P. H., & Cowan, J. D. (1993). Spiral waves in integrate-and-fire neural etworks. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information n processing systems (pp. 1001–1007). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Owen, M. R., Laing, C. R., & Coombes, S. (2007). Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities. New Journal of Physics, 9, 378.

    Article  Google Scholar 

  • Petersen, C. C. H., Grinvald, A., & Sakmann, B. (2003). Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. Journal of Neuroscience, 23(4), 1298–1309.

    CAS  PubMed  Google Scholar 

  • Pinto, D. J., & Ermentrout, G. B. (2001a). Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM journal on Applied Mathematics, 62, 206–225.

    Article  Google Scholar 

  • Pinto, D. J., & Ermentrout, G. B. (2001b). Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM Journal on Applied Mathematics, 62, 226–243.

    Article  Google Scholar 

  • Prechtl, J. C., Cohen, L. B., Pesaran, B., Mitra, P. P., & Kleinfeld, D. (1997). Visual stimuli induce waves of electrical activity in turtle cortex. Proceedings of the National Academy of Sciences of the United States of America, 94, 7621–7626.

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema, P. R., Engel, A. K., Konig, P., & Singer, W. (1997). Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature, 385, 1157–1161.

    Article  Google Scholar 

  • Rubin, J., & Bose, A. (2004). Localized activity patterns in excitatory neuronal networks. Network, 15, 133–158.

    Article  PubMed  Google Scholar 

  • Schiff, S. J., Huang, X., & Wu, J. Y. (2007). Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. Physical Review Letters, 98, 178102.

    Article  PubMed  Google Scholar 

  • Schiff, S. J., Sauer, T., Kumar, R., & Weinstein, S. L. (2005). Neuronal spatiotemporal pattern discrimination: The dynamical evolution of seizures. Neuroimage, 28, 1043–1055.

    Article  PubMed  Google Scholar 

  • Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., & Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23, 10809–10814.

    CAS  PubMed  Google Scholar 

  • Shusterman, V., & Troy, W. C. (2008). From baseline to epileptiform activity: A path to synchronized rhythmicity in large-scale neural networks. Physical Review E, 77, 061911.

    Article  Google Scholar 

  • Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, C., & Wesseling, J. (1998). Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron, 21, 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Tabak, J., Senn, W., O’Donovan, M. J., & Rinzel, J. (2000). Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. Journal of Neuroscience, 20, 3041–3056.

    CAS  PubMed  Google Scholar 

  • Troy, W. C. (2008). Traveling waves and synchrony in an excitable large-scale neuronal network with asymmetric connections. SIAM Journal on Applied Dynamical Systems, 7, 1247–1282.

    Article  Google Scholar 

  • Troy, W. C., & Shusterman, V. (2007). Patterns and features of families of traveling waves in large-scale neuronal networks. SIAM Journal on Applied Dynamical Systems, 6, 263–292.

    Article  Google Scholar 

  • Tsodyks, M. S., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 719–723.

    Article  CAS  PubMed  Google Scholar 

  • Tsodyks, M. S., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821–835.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79, 1549–1566.

    CAS  PubMed  Google Scholar 

  • Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. Journal of Neuroscience, 19, 9587–9603.

    CAS  PubMed  Google Scholar 

  • Wu, J. Y. (2008). Propagating waves of activity in the neocortex: What they are, what they do. Neuroscientist, 14, 487–502.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. Y., Guan, L., & Tsau, Y. (1999). Propagating activation during oscillations and evoked responses in neocortical slices. Journal of Neuroscience, 19, 5005–5015.

    CAS  PubMed  Google Scholar 

  • Wu, S., Hamaguchi, K., & Amari, S.-I. (2008). Dynamics and computation of continuous attractors. Neural Computation, 20, 994–1025.

    Article  PubMed  Google Scholar 

  • Xu, W., Huang, X., Takagaki, K., & Wu, J. Y. (2007). Compression and reflection of visually evoked cortical waves. Neuron, 55, 119–129.

    Article  PubMed  Google Scholar 

  • Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication was based on work supported in part by the National Science Foundation (DMS-0813677) and by Award No KUK-C1-013-4 made by King Abdullah University of Science and Technology (KAUST). PCB was also partially supported by the Royal Society-Wolfson Foundation. We would like to thank Carlo Laing for helpful conversations regarding numerical simulations. We also thank Bard Ermentrout for highlighting issues regarding bump stability calculations in the high-gain limit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bressloff.

Additional information

Action Editor: Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilpatrick, Z.P., Bressloff, P.C. Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. J Comput Neurosci 28, 193–209 (2010). https://doi.org/10.1007/s10827-009-0199-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0199-6

Keywords

Navigation