[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal binary signed-digit representations of integers and the Stern polynomial

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The binary signed-digit (BSD) representation of integers is used for efficient integer computation in various settings. The Stern polynomial is a polynomial extension of the well-studied Stern diatomic sequence. In this paper, we show previously unknown connections between BSD integer representations and the Stern polynomial. We then exploit these connections to devise a fast algorithm to count optimal BSD representations on a range of integers and calculate their weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Avizienis A.: Signed-digit number representations for fast parallel arithmetic. IRE Trans. Comput. 10(3), 389–400 (1961).

    Article  MathSciNet  Google Scholar 

  2. Booth A.D.: A signed binary multiplication technique. Q. J. Mech. Appl. Math. 4(2), 236–240 (1951). https://doi.org/10.1093/qjmam/4.2.236.

    Article  MathSciNet  Google Scholar 

  3. Dilcher K., Tomkins H.: Square classes and divisibility properties of Stern polynomials. Integers 18, A29 (2018).

    MathSciNet  Google Scholar 

  4. Eğecioğlu Ö., Koç Ç.K.: Fast modular exponentiation. In: Proceedings of 1990 Bilkent International Conference on New Trends in Communication, Control, and Signal Processing, vol. 1, pp. 188–194 (1990).

  5. Ganesan P., Manku G.S.: Optimal routing in Chord. In: ACM SIAM Symposium on Discrete Algorithms (SODA 2004) (2004). http://ilpubs.stanford.edu:8090/640/.

  6. Grabner P., Heuberger C.: On the number of optimal base 2 representations of integers. Des. Codes Cryptogr. 40, 25–39 (2006). https://doi.org/10.1007/s10623-005-6158-y.

    Article  MathSciNet  Google Scholar 

  7. Klavžar S., Milutinović U., Petr C.: Stern polynomials. Adv. Appl. Math. 39(1), 86–95 (2007). https://doi.org/10.1016/j.aam.2006.01.003.

    Article  MathSciNet  Google Scholar 

  8. Koblitz N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91, pp. 279–287. Springer, Berlin, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_22.

  9. Monroe L.: Binary signed-digit integers and the Stern diatomic sequence. Des. Codes Cryptogr. 89(12), 2653–2662 (2021). https://doi.org/10.1007/s10623-021-00903-6.

    Article  MathSciNet  Google Scholar 

  10. Morain F., Olivos J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. RAIRO Theor. Inform. Appl. 24, 531–544 (1990). https://doi.org/10.1051/ita/1990240605311.

    Article  MathSciNet  Google Scholar 

  11. Reitwiesner G.W.: Binary arithmetic. In: Advances in Computers, vol. 1, pp. 231–308. Elsevier (1960). https://doi.org/10.1016/S0065-2458(08)60610-5.

  12. Reznick B.: Some binary partition functions. In: Berndt B.C., Diamond H.G., Halberstam H., Hildebrand A. (eds.) Analytic Number Theory: Proceedings of a Conference in Honor of Paul T. Bateman, pp. 451–477. Birkhäuser Boston, Boston (1990). https://doi.org/10.1007/978-1-4612-3464-7_29.

    Chapter  Google Scholar 

  13. Sawada J.: A simple Gray code to list all minimal signed binary representations. SIAM J. Discret. Math. 21(1), 16–25 (2007). https://doi.org/10.1137/050641405.

    Article  MathSciNet  Google Scholar 

  14. Schinzel A.: The leading coefficients of Stern polynomials. In: Sander J., Steuding J., Steuding R. (eds.) From Arithmetic to Zeta-Functions: Number Theory in Memory of Wolfgang Schwarz, pp. 427–434. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28203-9_25.

    Chapter  Google Scholar 

  15. Schinzel A.: On the factors of Stern polynomials: remarks on the preceding paper of M. Ulas. Publ. Math. Debrecen 79, 83–88 (2011). https://doi.org/10.5486/PMD.2011.5110.

    Article  Google Scholar 

  16. Shallit J.: A primer on balanced binary representations. http://cs.uwaterloo.ca/~shallit/Papers/bbr.pdf (1992).

  17. Shannon C.E.: A symmetrical notation for numbers. Am. Math. Mon. 57(2), 90–93 (1950).

    Article  MathSciNet  Google Scholar 

  18. Tůma J., Vábek J.: On the number of binary signed digit representations of a given weight. Comment. Math. Univ. Carolin. 56(3), 287–306 (2015). https://doi.org/10.14712/1213-7243.2015.129.

    Article  MathSciNet  Google Scholar 

  19. Ulas M.: On certain arithmetic properties of Stern polynomials. Publ. Math. Debrecen 79(1–2), 55–81 (2011).

    Article  MathSciNet  Google Scholar 

  20. Ulas M.: Arithmetic properties of the sequence of degrees of Stern polynomials and related results. Int. J. Number Theory 8, 669–687 (2012). https://doi.org/10.1142/S1793042112500388.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous reviewers of [9] for helpful suggestions relating to the extension of that work.

Funding

This work has been authored by an employee of Triad National Security, LLC, operator of the Los Alamos National Laboratory under Contract No.89233218CNA000001 with the U.S. Department of Energy. This work was also supported by LANL’s Ultrascale Systems Research Center at the New Mexico Consortium (Contract No. DE-FC02-06ER25750).). The United States Government retains and the publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this work, or allow others to do so for United States Government purposes.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable; only one author. This publication has been assigned the LANL identifier LA-UR-23-27982.

Corresponding author

Correspondence to Laura Monroe.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by J. Jedwab.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monroe, L. Optimal binary signed-digit representations of integers and the Stern polynomial. Des. Codes Cryptogr. 92, 1501–1516 (2024). https://doi.org/10.1007/s10623-023-01355-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01355-w

Keywords

Mathematics Subject Classification

Navigation