[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Suzuki-invariant codes from the Suzuki curve

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we consider the Suzuki curve \(y^q + y = x^{q_0}(x^q + x)\) over the field with \(q = 2^{2m+1}\) elements. The automorphism group of this curve is known to be the Suzuki group \(\mathrm{{Sz}}(q)\) with \(q^2(q-1)(q^2+1)\) elements. We construct AG codes over \(\mathbb {F}_{q^4}\) from an \(\mathrm{{Sz}}(q)\)-invariant divisor D, giving an explicit basis for the Riemann–Roch space \(L(\ell D)\) for \(0 < \ell \le q^2-1\). The full Suzuki group \(\mathrm{{Sz}}(q)\) acts faithfully on each code. These families of codes have very good parameters and information rate close to 1. In addition, they are explicitly constructed. The dual codes of these families are of the same kind if \(2g-1 \le \ell \le q^2-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen H., Geil O.: Evaluation codes from order domain theory. Finite Fields Appl. 14(1), 92–123 (2008).

  2. Beelen P.: The order bound for general algebraic geometric codes. Finite Fields Appl. 13(3), 665–680 (2007).

  3. Campillo A., Farrán J.: Computing Weierstrass semigroups and the Feng–Rao distance from singular plane models. Finite Fields Appl. 6(1), 71–92 (2000).

  4. Chen C., Duursma I.: Geometry Reed–Solomon codes of length 64 and 65 over \({\mathbb{F}}_8\). IEEE Trans. Inf. Theory 49(5), 1351–1353 (2003).

  5. Deligne P., Lusztig G.: Representations of reductive groups over finite fields. Ann. Math. 103, 103–161 (1976).

  6. Duursma I., Park S.: Delta sets for divisors supported in two points. Finite Fields Appl. 18(5), 865–885 (2012).

  7. Duursma I., Park S., Kirov R.: Distance bounds for algebraic geometric codes. J. Pure Appl. Algebra 215(8), 1863–1878 (2011).

  8. Feng G., Rao T.: Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 39(1), 37–45 (1993).

  9. Fuhrmann R., Fernando T.: On Weierstrass points and optimal curves. Rend. Circ. Mat. Palermo 2(51), 25–46 (1998).

  10. Geil O., Munuera C., Ruano D., Torres F.: On the order bounds for one-point AG codes. Adv. Math. Commun. 5(3), 489–504 (2011).

  11. Giulietti M., Korchmáros G., Torres F.: Quotient curves of the Suzuki curve. Acta Arith. 122(3), 245–274 (2006).

  12. Hansen J.P.: Deligne–Lusztig varieties and group codes. In: Coding Theory and Algebraic Geometry (Luminy, 1991). Lecture Notes in Mathematics, vol. 1518, pp. 63–81. Springer, Berlin (1992).

  13. Hansen J.P., Stichtenoth H.: Group codes on certain algebraic curves with many rational points. Appl. Algebra Eng. Commun. Comput. 1(1), 67–77 (1990).

  14. Hartshorne R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977).

  15. Henn H.: Funktionenkörper mit grosser Automorphismengruppe. J. Reine Angew. Math. 302, 96–115 (1978).

  16. Høholdt T., van Lint J., Pellikaan R.: Algebraic geometry codes. In: Handbook of Coding Theory 1, vol. I, pp. 871–961. Elsevier, Amsterdam (1998).

  17. Hurwitz A.: Über algebraische Gebilde mit Eindeutigen Transformationen in sich. Math. Ann. 41(3), 403–442 (1893).

  18. Joyner D., Ksir A.: Automorphism groups of some AG codes. IEEE Trans. Inf. Theory 52(7), 3325–3329 (2006).

  19. Lundell B., McCullough J.: A generalized floor bound for the minimum distance of geometric Goppa codes. J. Pure Appl. Algebra 207(1), 155–164 (2006).

  20. Matthews G.L: Codes from the Suzuki function field. IEEE Trans. Inf. Theory 50(12), 3298–3302 (2004).

  21. Stichtenoth H.: Algebraic function field and codes. Springer, Berlin (2009).

  22. Suzuki M.: On a class of doubly transitive groups. Ann. Math. 75, 105–145 (1962).

Download references

Acknowledgments

The authors would like to thank Rachel Pries for organizing the workshop on rational points on Suzuki Curves in which this paper was conceived. We also would like to thank the two anonymous reviewers for the very useful comments and suggestions which helped us improve the quality of our paper. This work was conducted at the Mathematics Department, Colorado State University, Summer 2011, funded by NSF grant DMS-11-01712.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilaf Hasson.

Additional information

Communicated by P. Charpin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eid, A., Hasson, H., Ksir, A. et al. Suzuki-invariant codes from the Suzuki curve. Des. Codes Cryptogr. 81, 413–425 (2016). https://doi.org/10.1007/s10623-015-0164-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0164-5

Keywords

Mathematics Subject Classification

Navigation