Abstract
We prove that the automorphism group of an extremal binary self-dual \([120, 60, 24]\) code does not contain elements of order \(29\). Combining this with the known results in the literature, one obtains that \(|G|\) divides \(2^a\cdot 3\cdot 5\cdot 7\cdot 19\cdot 23\) for a non-negative integer \(a\).
Similar content being viewed by others
References
Assmus Jr. E.F., Mattson Jr. H.F.: New 5-designs. J. Comb. Theory 6, 122–151 (1969).
Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).
Bouyuklieva S., de la Cruz J., Willems W.: On the automorphism group of a binary self-dual [120, 60, 24] code. AAECC 24(3–4), 201–214 (2013).
Bouyuklieva S., Malevich A., Willems W.: Automorphisms of extremal self-dual codes. IEEE Trans. Inf. Theory 56, 2091–2096 (2010).
de la Cruz J.: On extremal self-dual codes of length 120. Des. Codes Cryptogr. (2013). doi:10.1007/s10623-013-9902-8.
de la Cruz J., Willems W.: On extremal self-dual code of length 96. IEEE Trans. Inf. Theory 57, 6820–6828 (2011).
Gleason A.M.: Weight polynomials of self-dual codes and the MacWilliams identities. Actes du Congrès International des Mathèmaticiens (Nice. 1970), Tome 3, pp. 211–215. Gauthier-Villars, Paris (1971).
Grassl M.: Bounds on the minimum distance of linear codes and quantum codes [Online]. Available: http://www.codetables.de.
Huffman W.C.: Automorphisms of codes with applications to extremal doubly even codes of length 48. IEEE Trans. Inf. Theory IT- 28, 511–521 (1982).
Mallows C.L., Sloane N.J.A.: An upper bound for self-dual codes. Inf. Control 22, 188–200 (1973).
Pless V., Huffman W.C.: (eds.) Handbook of Coding Theory. Elsevier, Amsterdam, (1998).
Sloane N.J.A.: Is there a [72, 36], \(d=16\) self-dual code? IEEE Trans. Inf. Theory 19, 251 (1973).
Yorgov V.Y.: Binary self-dual codes with automorphisms of odd order, Probl. Peredachi Informatsii. vol. 19, pp. 11–24, (1983). ( in Russian).
Yorgov V.Y.: A method for constructing inequivalent self-dual codes with applications to length 56. IEEE Trans. Inf. Theory IT- 33, 77–82 (1987).
Yorgov V., Yorgov D.: The automorphism group of a self dual binary [72,36,16] code does not contain \(\rm Z_4\) (preprint, arXiv:1310.2570v2).
Zhang S.: On the nonexistence of extremal self-dual codes. Discret. Appl. Math. 91, 277–286 (1999).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. D. Key.
Rights and permissions
About this article
Cite this article
de la Cruz, J., Kiermaier, M. & Wassermann, A. The automorphism group of an extremal [120, 60, 24] code does not contain elements of order 29. Des. Codes Cryptogr. 78, 693–702 (2016). https://doi.org/10.1007/s10623-014-0025-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-014-0025-7