[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The automorphism group of an extremal [120, 60, 24] code does not contain elements of order 29

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We prove that the automorphism group of an extremal binary self-dual \([120, 60, 24]\) code does not contain elements of order \(29\). Combining this with the known results in the literature, one obtains that \(|G|\) divides \(2^a\cdot 3\cdot 5\cdot 7\cdot 19\cdot 23\) for a non-negative integer \(a\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus Jr. E.F., Mattson Jr. H.F.: New 5-designs. J. Comb. Theory 6, 122–151 (1969).

  2. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).

  3. Bouyuklieva S., de la Cruz J., Willems W.: On the automorphism group of a binary self-dual [120, 60, 24] code. AAECC 24(3–4), 201–214 (2013).

  4. Bouyuklieva S., Malevich A., Willems W.: Automorphisms of extremal self-dual codes. IEEE Trans. Inf. Theory 56, 2091–2096 (2010).

  5. de la Cruz J.: On extremal self-dual codes of length 120. Des. Codes Cryptogr. (2013). doi:10.1007/s10623-013-9902-8.

  6. de la Cruz J., Willems W.: On extremal self-dual code of length 96. IEEE Trans. Inf. Theory 57, 6820–6828 (2011).

  7. Gleason A.M.: Weight polynomials of self-dual codes and the MacWilliams identities. Actes du Congrès International des Mathèmaticiens (Nice. 1970), Tome 3, pp. 211–215. Gauthier-Villars, Paris (1971).

  8. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes [Online]. Available: http://www.codetables.de.

  9. Huffman W.C.: Automorphisms of codes with applications to extremal doubly even codes of length 48. IEEE Trans. Inf. Theory IT- 28, 511–521 (1982).

  10. Mallows C.L., Sloane N.J.A.: An upper bound for self-dual codes. Inf. Control 22, 188–200 (1973).

  11. Pless V., Huffman W.C.: (eds.) Handbook of Coding Theory. Elsevier, Amsterdam, (1998).

  12. Sloane N.J.A.: Is there a [72, 36], \(d=16\) self-dual code? IEEE Trans. Inf. Theory 19, 251 (1973).

  13. Yorgov V.Y.: Binary self-dual codes with automorphisms of odd order, Probl. Peredachi Informatsii. vol. 19, pp. 11–24, (1983). ( in Russian).

  14. Yorgov V.Y.: A method for constructing inequivalent self-dual codes with applications to length 56. IEEE Trans. Inf. Theory IT- 33, 77–82 (1987).

  15. Yorgov V., Yorgov D.: The automorphism group of a self dual binary [72,36,16] code does not contain \(\rm Z_4\) (preprint, arXiv:1310.2570v2).

  16. Zhang S.: On the nonexistence of extremal self-dual codes. Discret. Appl. Math. 91, 277–286 (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Wassermann.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Cruz, J., Kiermaier, M. & Wassermann, A. The automorphism group of an extremal [120, 60, 24] code does not contain elements of order 29. Des. Codes Cryptogr. 78, 693–702 (2016). https://doi.org/10.1007/s10623-014-0025-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-0025-7

Keywords

Mathematics Subject Classification