[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization (to appear)

  2. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On Augmented Lagrangian Methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Augmented Lagrangian methods under the Constant Positive Linear Dependence constraint qualification. Math. Program. 111, 5–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between the Constant Positive Linear Dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. (to appear)

  6. Andretta, M., Birgin, E.G., Martínez, J.M.: Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization. Optimization 54, 305–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birgin, E.G., Fernández, D., Martínez, J.M.: On the boundedness of penalty parameters in an Augmented Lagrangian method with lower level constraints. Technical Report, Department of Applied Mathematics, State University of Campinas, Brazil

  8. Birgin, E.G., Martínez, J.M.: A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. Computing [Suppl.] 15, 49–60 (2001)

    Article  Google Scholar 

  9. Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buys, J.D.: Dual algorithms for constrained optimization problems. Doctoral Dissertation, University of Leiden, Leiden, the Netherlands (1972)

  11. Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Stat. Comput. 16, 1190–1208 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coleman, T.F., Li, Y.: On the convergence of reflective newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. 67, 189–224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coleman, T.F., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Conn, A.R., Gould, N.I.M., Sartenaer, A., Toint, Ph.L.: Convergence properties of an Augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints. SIAM J. Optim. 6, 674–703 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25, 433–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Testing a class of methods for solving minimization problems with simple bounds on the variables. Math. Comput. 50, 399–430 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: A globally convergent Augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28, 545–572 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: LANCELOT: a Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer Series in Computational Mathematics, vol. 17. Springer, New York (1992)

    MATH  Google Scholar 

  19. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust Region Methods. MPS/SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  20. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Lancelot: A Fortran Package For farge Scale Nonlinear Optimization. Springer, Berlin (1992)

    Google Scholar 

  21. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr and SifDec: a constrained and unconstrained testing environment. ACM Trans. Math. Softw. 29, 373–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17, 526–557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 45, 303–320 (1969)

    Article  MathSciNet  Google Scholar 

  25. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  26. Qi, L., Wei, Z.: On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10, 963–981 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T.: A dual approach for solving nonlinear programming problems by unconstrained optimization. Math. Program. 5, 354–373 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, C., Byrd, R.H., Nocedal, J.: L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. http://www.ime.usp.br/~egbirgin/tango/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto G. Birgin.

Additional information

This work was supported by PRONEX-CNPq/FAPERJ (E-26/171.1510/2006-APQ1), FAPESP (2006/53768-0, 2006/03496-3 and 2009/10241-0) and CNPq (Grant 304484/2007-5).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birgin, E.G., Martínez, J.M. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Comput Optim Appl 51, 941–965 (2012). https://doi.org/10.1007/s10589-011-9396-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9396-0

Keywords

Navigation