[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An h-adaptive RKDG method with troubled-cell indicator for one-dimensional detonation wave simulations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we discuss an extension of the adaptive technique in Zhu and Qiu (J. Comput. Phys. 228, 6957-6976 2009) to design an h-adaptive Runge-Kutta discontinuous Galerkin (RKDG) method for the simulations of several classical one-dimensional detonation waves. The TVB troubled-cell indicator is employed to detect the troubled cells which are believed to contain the discontinuities. An adaptive mesh is generated at each time-level by refining the troubled cells and coarsening the others. A recursive multi-level mesh refinement technique is designed to avoid the problem that the detonation front moves so fast that there are not enough cells to resolve the detonation front before it leaves. We describe the numerical implementation in detail including the adaptive procedure, solution reconstruction method and troubled-cell indicator. Furthermore, a high order positivity-preserving technique is employed for the robustness of our algorithm. Extensive numerical tests are conducted to show the effectiveness of the adaptive strategy and advantages of our adaptive method over the fixed-mesh RKDG method in saving the computational storage and improving the solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azarenok, B.N., Tang, T.: Second-order Godunov-type scheme for reactive flow calculations on moving meshes. J. Comput. Phys. 206, 48–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billet, G., Ryan, J., Borrel, M.: A Runge Kutta discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids. In: 7th International Conference on Computational Fluid Dynamics, (ICCFD7-4201), Big Island, Hawaii (2012)

  3. Biswas, R., Devine, K., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–283 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourlioux, A., Majda, A.J., Roytburd, V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarke, J.F., Karni, S., Quirk, J.J., Roe, P.L., Simmonds, L.G., Toro, E.F.: Numerical computation of two-dimensional unsteady detonation waves in high energy solids. J. Comput. Phys. 106, 215–233 (1993)

    Article  MATH  Google Scholar 

  8. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comp. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comp. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dedner, A., Makridakis, C., Ohlberger, M.: Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer Anal. 45, 514–538 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Devine, K., Flaherty, J.: Parallel adaptive hp-refinement techniques for conservation laws. Appl. Numer. Math. 20, 367–386 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dou, H.S., Tsai, H.M., Khoo, B.C., Qiu, J.: Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme. Combust. Flame 154, 644–659 (2008)

    Article  Google Scholar 

  15. Flaherty, J., Loy, R., Shephard, M., Szymanski, B., Teresco, J., Ziantz, L.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib.Comput. 47, 139–152 (1997)

    Article  MATH  Google Scholar 

  16. Gao, Z., Don, W.S.: Mapped hybrid Central-WENO finite difference scheme for detonation waves simulations. J. Sci. Comput. 55, 351–371 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, Z., Don, W.S., Li, Z.: High order weighted essentially non-oscillation schemes for one-dimensional detonation wave simulations. J. Comput. Math. 29, 623–638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, Z., Don, W.S., Li, Z.: High order weighted essentially non-oscillation schemes for two-dimensional detonation wave simulations. J. Sci. Comput. 53, 80–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comp. Phy. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  21. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. LeVeque, R.J., Yee, H.C.: A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comp. Phy. 86, 187–210 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Papalexandris, M.V., Leonard, A., Dimotakis, P.E.: Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension. J. Comp. Phy. 134, 31–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin mehtods using weighted essentially nonosillatory limiters. SIAM J. Sci Comput. 27, 995–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Remacle, J.-F., Flaherty, J., Shephard, M.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sharpe, G.J., Falle, S.A.E.G.: Two-dimensional numerical simulations of idealized detonations. Proc. R Soc. 456, 2081–2100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tsuboi, N., Daimon, Y., Hayashi, A.K.: Three-dimensional numerical simulation of detonations in coaxial tubes. Shock Waves 18, 379–392 (2008)

    Article  MATH  Google Scholar 

  29. Wang, C., Ning, J.G., Ma, T.B.: Numerical simulation of detonation and multi-material interface tracking. Comput. Mater. Con. 22, 73–96 (2011)

  30. Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuan, L., Zhang, L.: A Runge-Kutta discontinuous Galerkin method for detonation wave simulation. AIP Conf. Proc. 1376, 543–545 (2011)

    Article  Google Scholar 

  32. Zhang, Z.C., Yu, S.T., He, H., Chang, S.C.: Direct calculation of two- and three- dimensional detonations by an extended CE/SE method. AIAA, pp. 2001–0476 (2001)

  33. Zhu, H., Qiu, J.: Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: one-dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu, H., Qiu, J.: An h-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws. Adv. Comput. Math. 39, 445–463 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gao.

Additional information

Communicated by: I. Graham

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Gao, Z. An h-adaptive RKDG method with troubled-cell indicator for one-dimensional detonation wave simulations. Adv Comput Math 42, 1081–1102 (2016). https://doi.org/10.1007/s10444-016-9454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9454-3

Keywords

Mathematics Subject Classification (2010)

Navigation