[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Cloud resource allocation schemes: review, taxonomy, and opportunities

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Cloud computing has emerged as a popular computing model to process data and execute computationally intensive applications in a pay-as-you-go manner. Due to the ever-increasing demand for cloud-based applications, it is becoming difficult to efficiently allocate resources according to user requests while satisfying the service-level agreement between service providers and consumers. Furthermore, cloud resource heterogeneity, the unpredictable nature of workload, and the diversified objectives of cloud actors further complicate resource allocation in the cloud computing environment. Consequently, both the industry and academia have commenced substantial research efforts to efficiently handle the aforementioned multifaceted challenges with cloud resource allocation. The lack of a comprehensive review covering the resource allocation aspects of optimization objectives, design approaches, optimization methods, target resources, and instance types has motivated a review of existing cloud resource allocation schemes. In this paper, current state-of-the-art cloud resource allocation schemes are extensively reviewed to highlight their strengths and weaknesses. Moreover, a thematic taxonomy is presented based on resource allocation optimization objectives to classify the existing literature. The cloud resource allocation schemes are analyzed based on the thematic taxonomy to highlight the commonalities and deviations among them. Finally, several opportunities are suggested for the design of optimal resource allocation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst 25(6):599–616

    Article  Google Scholar 

  2. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree compared. In: Grid computing environments workshop, pp 1–10

  3. Dillon T, Wu C, Chang E (2010) Cloud computing: issues and challenges. In: 2010 24th IEEE international conference on advanced information networking and applications, pp 27–33

  4. Hameed A, Khoshkbarforoushha A, Ranjan R, Jayaraman PP, Kolodziej J, Balaji P, Zeadally S, Malluhi QM, Tziritas N, Vishnu A, Khan SU, Zomaya A (2014) A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems. Computing. doi:10.1007/s00607-014-0407-8

  5. Beloglazov A, Buyya R, Lee YC, Zomaya A (2011) A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv Comput 82(2):47–111

  6. Aceto G, Botta A, de Donato W, Pescapè A (2013) Cloud monitoring: a survey. Comput Netw 57(9):2093–2115

    Article  Google Scholar 

  7. Jennings B, Stadler R (2015) Resource management in clouds: Survey and research challenges. J Netw Syst Manag 23(3):567–619

  8. Vinothina V, Sridaran R, Ganapathi P (2012) A survey on resource allocation strategies in cloud computing. Int J Adv Comput Sci Appl 3(6):97–104

    Google Scholar 

  9. Ahmed M, Chowdhury A (2012) An advanced survey on cloud computing and state-of-the-art research issues. IJCSI Int J Comput Sci Issues 9(1):1694–0814

    Google Scholar 

  10. Goyal A, Dadizadeh S (2009) A survey on cloud computing. Univ Br Columbia Tech Rep CS 508:55–58

    Google Scholar 

  11. Choubey R, Dubey R, Bhattacharjee J (2011) A survey on cloud computing security, challenges and threats. Int J Comput Sci Eng 3(3):1227–1231

    Google Scholar 

  12. Atzori L, Granelli F, Pescapè A (2011) A network-oriented survey and open issues in cloud computing. In: Cloud Computing: Methodology, Systems, and Applications. CRC Press, Florida, pp 91–108

  13. Rimal B, Choi E, Lumb I (2009) A taxonomy and survey of cloud computing systems. In: INC, IMS IDC, 2009. NCM’09

  14. Hussain H, Malik SUR, Hameed A, Khan SU, Bickler G, Min-Allah N, Qureshi MB, Zhang L, Yongji W, Ghani N, Kolodziej J, Zomaya AY, Xu C-Z, Balaji P, Vishnu A, Pinel F, Pecero JE, Kliazovich D, Bouvry P, Li H, Wang L, Chen D, Rayes A (2013) A survey on resource allocation in high performance distributed computing systems. Parallel Comput 39(11):709–736

    Article  MathSciNet  Google Scholar 

  15. Manvi SS, Shyam GK (2013) Resource management for infrastructure as a service (IaaS) in cloud computing: a survey. J Netw Comput Appl 41:424–440

    Article  Google Scholar 

  16. Huang L, Chen H, Hu T (2013) Survey on resource allocation policy and job scheduling algorithms of cloud computing. J Softw 8(2):480–487

    Article  Google Scholar 

  17. Shuja J, Bilal K, Madani SA, Othman M, Ranjan R, Balaji P, Khan SU (2014) Survey of techniques and architectures for designing energy-efficient data centers. IEEE Syst J 99:1–13

  18. Ahmad RW, Gani A, Hamid SHAb, Shiraz M, Xia F, Madani SA (2015) Virtual machine migration in cloud data centers: a review, taxonomy, and open research issues. J Supercomput 71(7):2473–2515

    Article  Google Scholar 

  19. Ahmad RW, Gani A, Hamid SHA, Shiraz M, Yousafzai A, Xia F (2015) A survey on virtual machine migration and server consolidation frameworks for cloud data centers. J Netw Comput Appl 52:11–25

    Article  Google Scholar 

  20. Armbrust M, Stoica I, Zaharia M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A (2010) A view of cloud computing. Commun ACM 53(4):50

    Article  Google Scholar 

  21. Mell P, Grance T (2011) The NIST definition of cloud computing [Recommendations of the National Institute of Standards and Technology-Special Publication 800-145]. NIST, Washington DC.Recuperado de, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

  22. AWS| Amazon Elastic Compute Cloud (EC2)—Scalable Cloud Servers. http://aws.amazon.com/ec2/. Accessed 05 Feb 2014

  23. Public cloud hosting, computing, storage, and networking by rackspace. http://www.rackspace.com/cloud/. Accessed 05 Feb 2014

  24. Joyent. http://www.joyent.com/. Accessed 22 Apr 2014

  25. EUCALYPTUS. https://www.eucalyptus.com/. Accessed 16 Apr 2014

  26. Morshedlou H, Meybodi MR (2014) Decreasing impact of SLA violations: a proactive resource allocation approach for cloud computing environments. IEEE Trans Cloud Comput 2(2):156–167

    Article  Google Scholar 

  27. ARM—the architecture for the digital world. http://www.arm.com/. Accessed 05 Feb 2014

  28. Intel\(^{\textregistered }\) Atom\(^{{\rm TM}}\) Processor. http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html. Accessed 05 Feb 2014

  29. Facebook, ARM, x86, and the future of the data center | ExtremeTech. http://www.extremetech.com/extreme/146850-facebook-arm-x86-and-the-future-of-the-data-center. Accessed 05 Feb 2014

  30. Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M, Yagi T, Tominaga J (2011) Interfacial phase-change memory. Nat Nanotechnol 6(8):501–505

    Article  Google Scholar 

  31. Memristor. http://www.memristor.org/. Accessed 05 Feb 2014

  32. Solid state storage 101: an introduction to solid state storage. In: SNIA White Pap

  33. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) Dcell: a scalable and fault-tolerant network structure for data centers. SIGCOMM Comput Commun Rev 38(4):75–86

    Article  Google Scholar 

  34. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) BCube: a high performance, server-centric network architecture for modular data centers. SIGCOMM Comput Commun Rev 39(4):63–74

    Article  Google Scholar 

  35. AWS | Amazon EC2 | Instance Types. http://aws.amazon.com/ec2/instance-types/. Accessed 05 Feb 2014

  36. HPC applications. http://aws.amazon.com/hpc-applications/. Accessed 05 Feb 2014

  37. Heger DA (2010) Optimized resource allocation and task scheduling challenges in cloud computing environments. http://www.datanubes.com/mediac/CloudNP.pdf. Accessed 26 May 2014

  38. Fujiwara I, Aida K, Ono I (2010) Applying double-sided combinational auctions to resource allocation in cloud computing. In: 2012 12th IEEE/IPSJ international symposium on applications and the internet. pp 7–14

  39. Satterthwaite MA, Williams SR (1993) The Bayesian theory of the k-double auction. In: Friedman D, Rust J (eds) The Double Auction Market: Institutions, Theories, and Evidence. Addison-Wesley, Reading, MA, pp 99–123

  40. Lin W-Y, Lin G-Y, Wei H-Y (2010) Dynamic auction mechanism for cloud resource allocation. In: 2010 10th IEEE/ACM international conference on, cluster, cloud and grid computing (CCGrid). pp 591–592

  41. Hu H, Li Z, Hu H (2012) An anti-cheating bidding approach for resource allocation in cloud computing environments. J Comput Inf Syst 8(4):1641–1654

    Google Scholar 

  42. Sun J, Wang X, Li K, Wu C, Huang M, Wang X (2013) An auction and league championship algorithm based resource allocation mechanism for distributed cloud. In: Wu C, Cohen A (eds) Advanced parallel processing technologies, vol 8299. Springer, Berlin, pp 334–346

    Chapter  Google Scholar 

  43. Baranwal G, Vidyarthi DP (2015) A fair multi-attribute combinatorial double auction model for resource allocation in cloud computing. J Syst Softw 108:60–76

    Article  Google Scholar 

  44. Zaman S, Grosu D (2013) A combinatorial auction-based mechanism for dynamic VM provisioning and allocation in clouds. IEEE Trans Cloud Comput 1(2):129–141

    Article  Google Scholar 

  45. Nejad MM, Mashayekhy L, Grosu D (2015) Truthful greedy mechanisms for dynamic virtual machine provisioning and allocation in clouds. IEEE Trans Parallel Distrib Syst 26(2):594–603

    Article  Google Scholar 

  46. Teng F, Magoulès F (2010) A new game theoretical resource allocation algorithm for cloud computing. In: Bellavista P, Chang R-S, Chao H-C, Lin S-F, Sloot PA (eds) Advances in grid and pervasive computing, vol 6104. Springer, Berlin, pp 321–330

    Chapter  Google Scholar 

  47. Zhang Y, Niyato D, Wang P (2013) An auction mechanism for resource allocation in mobile cloud computing systems. In: Ren K, Liu X, Liang W, Xu M, Jia X, Xing K (eds) Wireless algorithms, systems, and applications, vol 7992. Springer, Berlin, pp 76–87

    Chapter  Google Scholar 

  48. Nan G, Zang C, Dou R, Li M (2015) Pricing and resource allocation for multimedia social network in cloud environments. Knowl Based Syst 88:1–11

    Article  Google Scholar 

  49. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener Comput Syst 28(5):755–768

    Article  Google Scholar 

  50. Hasan MS, Huh E-N (2013) Heuristic based energy-aware resource allocation by dynamic consolidation of virtual machines in cloud data center. TIIS 7(8):1825–1842

    Article  Google Scholar 

  51. Yazir YO, Matthews C, Farahbod R, Neville S, Guitouni A, Ganti S, Coady Y (2010) Dynamic resource allocation in computing clouds using distributed multiple criteria decision analysis. In: 2010 IEEE 3rd international conference on cloud computing (CLOUD), pp 91–98

  52. Yin B, Wang Y, Meng L, Qiu X (2012) A multi-dimensional resource allocation algorithm in cloud computing. J Inf Comput Sci 9(11):3021–3028

    Google Scholar 

  53. Quan D, Basmadjian R, Meer H, Lent R, Mahmoodi T, Sannelli D, Mezza F, Telesca L, Dupont C (2012) Energy efficient resource allocation strategy for cloud data centres. In: Gelenbe E, Lent R, Sakellari G (eds) Computer and information sciences II. Springer, London, pp 133–141

    Google Scholar 

  54. Bessai K, Youcef S, Oulamara A, Godart C, Nurcan S (2012) Multi-objective resources allocation approaches for workflow applications in cloud environments. In: Herrero P, Panetto H, Meersman R, Dillon T (eds) On the move to meaningful internet systems: OTM 2012 workshops, vol 7567. Springer, Berlin, pp 654–657

    Chapter  Google Scholar 

  55. Lee Y, Zomaya A (2010) Resource allocation for energy efficient large-scale distributed systems. In: Prasad S, Vin H, Sahni S, Jaiswal M, Thipakorn B (eds) Information systems, technology and management, vol 54. Springer, Berlin, pp 16–19

    Chapter  Google Scholar 

  56. Lee HM, Jeong YS, Jang HJ (2014) Performance analysis based resource allocation for green cloud computing. J Supercomput 69(3):1013–1026

    Article  Google Scholar 

  57. Caron E, Desprez F, Rouzaud-Cornabas J (2014) Smart resource allocation to improve cloud security. In: Nepal S, Pathan M (eds) Security, privacy and trust in cloud systems. Springer, Berlin, pp 103–143

    Chapter  Google Scholar 

  58. Barrett E, Howley E, Duggan J (2013) Applying reinforcement learning towards automating resource allocation and application scalability in the cloud. Concurr Comput Pract Exp 25(12):1656–1674

    Article  Google Scholar 

  59. Xiao Z, Song W, Chen Q (2013) Dynamic resource allocation using virtual machines for cloud computing environment. Parallel Distrib Syst IEEE Trans 24(6):1107–1117

    Article  Google Scholar 

  60. Lin CH, Lu CT, Chen YH, Li JS (2014) Resource allocation in cloud virtual machines based on empirical service traces. Int J Commun Syst 27(12):4210–4225

  61. Liang H, Xing T, Cai LX, Huang D, Peng D, Liu Y (2013) Adaptive computing resource allocation for mobile cloud computing. IJDSN 2013

  62. Chang F, Ren J, Viswanathan R (2010) Optimal resource allocation in clouds. In: 2010 IEEE 3rd international conference on cloud computing (CLOUD), pp 418–425

  63. Nan G, Mao Z, Yu M, Li M, Wang H, Zhang Y (2014) Stackelberg game for bandwidth allocation in cloud-based wireless live-streaming social networks. IEEE Syst J 8(1):256–267

    Article  Google Scholar 

  64. Espadas J, Molina A, Jiménez G, Molina M, Ramírez R, Concha D (2013) A tenant-based resource allocation model for scaling Software-as-a-Service applications over cloud computing infrastructures. Future Gener Comput Syst 29(1):273–286

    Article  Google Scholar 

  65. Stolarz W, Woda M (2013) Proposal of cost-effective tenant-based resource allocation model for a SaaS system. In: Zamojski W, Mazurkiewicz J, Sugier J, Walkowiak T, Kacprzyk J (eds) New results in dependability and computer systems, vol 224. Springer International Publishing, Berlin, pp 409–420

    Chapter  Google Scholar 

  66. Li C, Li L (2013) Efficient resource allocation for optimizing objectives of cloud users, IaaS provider and SaaS provider in cloud environment. J Supercomput 65(2):866–885

    Article  Google Scholar 

  67. Li C, Li L (2013) Resource allocation in cloud computing: model and algorithm. Int J Web Grid Serv 9(2):193–211

    Article  Google Scholar 

  68. Li Y, Zhuo L, Shen H (2013) An efficient resource allocation method for multimedia cloud computing. In: Sun C, Fang F, Zhou Z-H, Yang W, Liu Z-Y (eds) Intelligence science and big data engineering, vol 8261. Springer, Berlin, pp 246–254

    Chapter  Google Scholar 

  69. Hadoop. http://hadoop.apache.org/. Accessed 16 Apr 2014

  70. Warneke D, Kao O (2011) Exploiting dynamic resource allocation for efficient parallel data processing in the cloud. Parallel Distrib Syst IEEE Trans 22(6):985–997

    Article  Google Scholar 

  71. Kumar VV, Palaniswami S (2012) A dynamic resource allocation method for parallel dataprocessing in cloud computing. J Comput Sci 8(5):780–788

    Article  Google Scholar 

  72. Goudarzi H, Pedram M (2011) Multi-dimensional SLA-based resource allocation for multi-tier cloud computing systems. In: Proceedings of the 2011 IEEE 4th international conference on cloud computing, pp 324–331

  73. Chang H-Y, Lu H-C, Huang Y-H, Lin Y-W, Tzang Y-J (2013) Novel auction mechanism with factor distribution rule for cloud resource allocation. Comput J 57(2):255–262

    Article  Google Scholar 

  74. Park J, Yu H, Lee E (2012) Resource allocation techniques based on availability and movement reliability for mobile cloud computing. In: Ramanujam R, Ramaswamy S (eds) Distributed computing and internet technology, vol 7154. Springer, Berlin, pp 263–264

    Chapter  Google Scholar 

  75. Wang J, Chen Y, Gmach D, Xie C, Wan J, Hua R (2012) pCloud: an adaptive I/O resource allocation algorithm with revenue consideration over public clouds. In: Li R, Cao J, Bourgeois J (eds) Advances in grid and pervasive computing, vol 7296. Springer, Berlin, pp 16–30

    Chapter  Google Scholar 

  76. Wei G, Vasilakos A, Zheng Y, Xiong N (2010) A game-theoretic method of fair resource allocation for cloud computing services. J Supercomput 54(2):252–269

    Article  Google Scholar 

  77. Doyle J, Shorten R, O’Mahony D (2012) Fair-Share’ for Fair Bandwidth allocation in cloud computing. IEEE Commun Lett 16(4):550–553

    Article  Google Scholar 

  78. Jiang J-R (2011) Nondominated local coteries for resource allocation in grids and clouds. Inf Process Lett 111(8):379–384

    Article  MathSciNet  MATH  Google Scholar 

  79. Cetinski K, Juric MB (2015) AME-WPC: advanced model for efficient workload prediction in the cloud. J Netw Comput Appl 55:191–201

    Article  Google Scholar 

  80. Calyam P, Patali R, Berryman A, Lai AM, Ramnath R (2011) Utility-directed resource allocation in virtual desktop clouds. Comput Netw 55(18):4112–4130

    Article  Google Scholar 

  81. Chen X, Zhang J, Li J, Li X (2011) Resource virtualization methodology for on-demand allocation in cloud computing systems. Serv Oriented Comput Appl 7(2):77–100

    Article  Google Scholar 

  82. Yang C-T, Cheng H-Y, Huang K-L (2011) A dynamic resource allocation model for virtual machine management on cloud. In: Kim T, Adeli H, Cho H, Gervasi O, Yau S, Kang B-H, Villalba J (eds) Grid and distributed computing, vol 261. Springer, Berlin, pp 581–590

    Chapter  Google Scholar 

  83. Lin W, Wang JZ, Liang C, Qi D (2011) A threshold-based dynamic resource allocation scheme for cloud computing. Procedia Eng 23:695–703

    Article  Google Scholar 

  84. Chongguang REN (2011) An improved adaptive dynamic programming algorithm for cloud storage resource allocation. J Comput Inf Syst 7(15)

  85. Nathani A, Chaudhary S, Somani G (2012) Policy based resource allocation in IaaS cloud. Future Gener Comput Syst 28(1):94–103

    Article  Google Scholar 

  86. Nguyen T-D, Nguyen AT, Nguyen MD, Van Nguyen M, Huh E-N (2013) An improvement of resource allocation for migration process in cloud environment. Comput J 57(2):308–318

    Article  Google Scholar 

  87. Sunil Rao K, Santhi Thilagam P (2015) Heuristics based server consolidation with residual resource defragmentation in cloud data centers. Future Gener Comput Syst 50:87–98

    Article  Google Scholar 

  88. Hussin M, Lee Y, Zomaya A (2011) Reputation-based resource allocation in market-oriented distributed systems. In: Xiang Y, Cuzzocrea A, Hobbs M, Zhou W (eds) Algorithms and architectures for parallel processing, vol 7016. Springer, Berlin, pp 443–452

    Chapter  Google Scholar 

  89. Liu Y, Yang S, Lin Q, Kim G-B (2012) Loyalty-based resource allocation mechanism in cloud computing. In: Qian Z, Cao L, Su W, Wang T, Yang H (eds) Recent advances in computer science and information engineering, vol 125. Springer, Berlin, pp 233–238

    Chapter  Google Scholar 

  90. Liao K, Shen H (2011) Unconstrained and constrained fault-tolerant resource allocation. In: Fu B, Du D-Z (eds) Computing and combinatorics, vol 6842. Springer, Berlin, pp 555–566

    Chapter  Google Scholar 

  91. Liao K, Shen H, Guo L (2013) Improved approximation algorithms for constrained fault-tolerant resource allocation. In: Gąsieniec L, Wolter F (eds) Fundamentals of computation theory, vol 8070. Springer, Berlin, pp 236–247

    Chapter  Google Scholar 

  92. Wu L, Garg SK, Buyya R (2011) SLA-based resource allocation for software as a service provider (SaaS) in cloud computing environments. In: 2011 11th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid), pp 195–204

  93. Emeakaroha VC, Brandic I, Maurer M, Breskovic I (2011) SLA-aware application deployment and resource allocation in clouds. In: 2011 IEEE 35th annual, computer software and applications conference workshops (COMPSACW), pp 298–303

  94. Cloud service measurement initiative consortium (CSMIC), service measurement index. http://www.cloudcommons.com/. Accessed 02 Jul 2014

  95. Sagbo K, Houngue P (2012) Quality architecture for resource allocation in cloud computing. In: Paoli F, Pimentel E, Zavattaro G (eds) Service-oriented and cloud computing, vol 7592. Springer, Berlin, pp 154–168

    Chapter  Google Scholar 

  96. Liu W, Peng S, Du W, Wang W, Zeng GS (2014) Security-aware intermediate data placement strategy in scientific cloud workflows. Knowl Inf Syst 41(2):423–447

    Article  Google Scholar 

  97. Sookhak M, Talebian H, Ahmed E, Gani A, Khan MK (2014) A review on remote data auditing in single cloud server: taxonomy and open issues. J Netw Comput Appl 43:121–141

    Article  Google Scholar 

  98. Ergu D, Kou G, Peng Y, Shi Y, Shi Y (2013) The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. J Supercomput 64(3):835–848

    Article  Google Scholar 

  99. Ghamdi MA, Chester AP, He L, Jarvis SA (2012) Dynamic resource allocation for multi-tiered, cluster-based web hosting environments. In: Ivanov I, van Sinderen M, Shishkov B (eds) Cloud computing and services science. Springer, New York, pp 333–352

    Chapter  Google Scholar 

  100. Yang S (2011) Research on resource allocation for multi-tier web applications in a virtualization environment. Front Comput Sci China 5(4):506–512

    Article  MathSciNet  Google Scholar 

  101. Maghawry E, Ismail R, Badr N, Tolba M (2012) An enhanced resource allocation approach for optimizing sub query on cloud. In: Hassanien A, Salem A-B, Ramadan R, Kim T (eds) Advanced machine learning technologies and applications, vol 322. Springer, Berlin, pp 413–422

    Chapter  Google Scholar 

  102. Calyam P, Rajagopalan S, Seetharam S, Selvadhurai A, Salah K, Ramnath R (2014) VDC-analyst: design and verification of virtual desktop cloud resource allocations. Comput Netw 68:110–122

    Article  Google Scholar 

  103. Caron E, Desprez F, Muresan A, Suter F (2012) Budget constrained resource allocation for non-deterministic workflows on an IaaS cloud. In: Xiang Y, Stojmenovic I, Apduhan B, Wang G, Nakano K, Zomaya A (eds) Algorithms and architectures for parallel processing, vol 7439. Springer, Berlin, pp 186–201

    Chapter  Google Scholar 

  104. Di S, Wang C-L (2013) Error-tolerant resource allocation and payment minimization for cloud system. Parallel Distrib Syst IEEE Trans 24(6):1097–1106

    Article  Google Scholar 

  105. Tsai J-T, Fang J-C, Chou J-H (2013) Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm. Comput Oper Res 40(12):3045–3055

    Article  MATH  Google Scholar 

  106. Mazzucco M, Dyachuk D (2012) Optimizing cloud providers revenues via energy efficient server allocation. Sustain Comput Inform Syst 2(1):1–12

    Google Scholar 

  107. Hung PP, Bui TA, Morales MAG, Van Nguyen M, Huh EN (2013) Optimal collaboration of thin–thick clients and resource allocation in cloud computing. Pers Ubiquitous Comput 18(3):563–572

  108. Varalakshmi P, Ramaswamy A, Balasubramanian A, Vijaykumar P (2011) An optimal workflow based scheduling and resource allocation in cloud. In: Abraham A, Mauri JL, Buford J, Suzuki J, Thampi S (eds) Advances in computing and communications, vol 190. Springer, Berlin, pp 411–420

    Chapter  Google Scholar 

  109. Kwiatkowski J, Fras M (2012) Request distribution toolkit for virtual resources allocation. In: Wyrzykowski R, Dongarra J, Karczewski K, Waśniewski J (eds) Parallel processing and applied mathematics, vol 7203. Springer, Berlin, pp 327–336

    Chapter  Google Scholar 

  110. Wu J, Chen L, Zheng Z, Lyu MR, Wu Z (2013) Clustering Web services to facilitate service discovery. Knowl Inf Syst 38(1):207–229

    Article  Google Scholar 

  111. Rygielski P, Tomczak J (2011) Context change detection for resource allocation in service-oriented systems. In: König A, Dengel A, Hinkelmann K, Kise K, Howlett R, Jain L (eds) Knowlege-based and intelligent information and engineering systems, vol 6882. Springer, Berlin, pp 591–600

    Chapter  Google Scholar 

  112. Qureshi SR (2014) Cache based cloud architecture for optimization of resource allocation and data distribution. In: Satapathy SC, Avadhani PS, Udgata SK, Lakshminarayana S (eds) ICT and critical infrastructure: proceedings of the 48th Annual Convention of Computer Society of India-Vol I, vol 248. Springer International Publishing, Berlin, pp 535–542

    Google Scholar 

  113. RahimiZadeh K, AnaLoui M, Kabiri P, Javadi B (2015) Performance modeling and analysis of virtualized multi-tier applications under dynamic workloads. J Netw Comput Appl 56:166–187

    Article  Google Scholar 

  114. Sato H, Koyama Y, Kurumatani K , Shiozawa Y, Deguchi H (2001) U-Mart: a test bed for interdisciplinary research into agent-based artificial markets. In Evolutionary Controversies in Economics. Springer, Japan, pp 179–190

  115. The CloudSim. http://www.cloudbus.org/cloudsim/. Accessed 16 Apr 2014

  116. SimJava. http://www.dcs.ed.ac.uk/home/hase/simjava/. Accessed 16 Apr 2014

  117. Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/. Accessed 16 Apr 2014

  118. The Grid Workloads Archive. http://gwa.ewi.tudelft.nl/. Accessed 16 Apr 2014

  119. Gao C, Wang X, Huang M (2013) A cloud resource allocation mechanism based on mean-variance optimization and double multi-attribution auction. In: Hsu C-H, Li X, Shi X, Zheng R (eds) Network and parallel computing, vol 8147. Springer, Berlin, pp 106–117

    Chapter  Google Scholar 

  120. You X, Wan J, Xu X, Jiang C, Zhang W, Zhang J (2011) ARAS-M: automatic resource allocation strategy based on market mechanism in cloud computing. J Comput 6(7):1287–1296

    Article  Google Scholar 

  121. The Xen Project. http://www.xenproject.org/. Accessed 16 Apr 2014

  122. MATLAB. http://www.mathworks.com/products/matlab/. Accessed 16 Apr 2014

  123. VMware vSphere. https://www.vmware.com/products/vsphere/. Accessed 16 Apr 2014

  124. httperf. http://www.hpl.hp.com/research/linux/httperf/. Accessed 25 Apr 2014

  125. O’Malley O, Murthy AC (2009) Winning a 60 second dash with a yellow elephant hadoop implementation. pp 1–9

  126. CoMon. http://comon.cs.princeton.edu/. Accessed 16 Apr 2014

  127. Apache JMeter. https://jmeter.apache.org/. Accessed 16 Apr 2014

  128. Raycroft P, Jansen R, Jarus M, Brenner PR (2014) Performance bounded energy efficient virtual machine allocation in the global cloud. Sustain Comput Inform Syst 4(1):1–9

  129. VMware ESXi and ESX. http://www.vmware.com/products/esxi-and-esx/overview. Accessed 16 Apr 2014

  130. The GridSim. http://www.cloudbus.org/gridsim/. Accessed 16 Apr 2014

  131. UMass Trace Repository. http://traces.cs.umass.edu/. Accessed 25 Apr 2014

  132. DiskSim. http://www.pdl.cmu.edu/DiskSim/. Accessed 16 Apr 2014

  133. OpenNebula. http://opennebula.org/. Accessed 16 Apr 2014

  134. HPCC. http://icl.cs.utk.edu/hpcc/. Accessed 25 Apr 2014

  135. SimGrid. http://simgrid.gforge.inria.fr/. Accessed 16 Apr 2014

  136. OMNeT++. http://www.omnetpp.org/. Accessed 16 Apr 2014

  137. ClarkNet-HTTP. http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html. Accessed 16 Apr 2014

  138. RUBiS. http://rubis.ow2.org/. Accessed 25 Apr 2014

  139. GENI. http://www.geni.net/. Accessed 16 Apr 2014

  140. Guo J, Wu J, Liu Q, Yan Y, Zhang B (2013) Research on virtual machine resources dynamic allocation method based on revenue in cloud computing. J Comput Inf Syst 9(22):9235–9242

    Google Scholar 

  141. Parallel Colt. https://sites.google.com/site/piotrwendykier/software/parallelcolt. Accessed 16 Apr 2014

  142. Zhang Y, Juels A, Reiter MK, Ristenpart T (2012) Cross-VM side channels and their use to extract private keys. In: Proceedings of the 2012 ACM conference on computer and communications security—CCS ’12, p 305

  143. Ristenpart T, Tromer E, Shacham H, Savage S (2009) Hey, you, get off of my cloud. In: Proceedings of the 16th ACM conference on computer and communications security—CCS ’09, p 199

  144. Wu Z, Xu Z, Wang H (2012) Whispers in the hyper-space: high-speed covert channel attacks in the cloud, In: Presented as part of the 21st USENIX Security Symposium (USENIX Security 12), pp 159–173

  145. Kivity A, Kamay Y, Laor D (2007) kvm: the Linux virtual machine monitor. In: Proceedings of the Linux symposium, vol 1. pp 225–230

  146. Endo PT, de AlmeidaPalhares AV, Pereira NN, Goncalves GE, Sadok D, Kelner J, Melander B, Mangs J-E (2011) Resource allocation for distributed cloud: concepts and research challenges. Netw IEEE 25(4):42–46

    Article  Google Scholar 

  147. Wood T, Shenoy PJ, Venkataramani A, Yousif MS (2007) Black-box and gray-box strategies for virtual machine migration. NSDI 7:17–17

  148. Hargrove P, Duell J (2006) Berkeley lab checkpoint/restart (blcr) for linux clusters. J Phys Conf Ser 46(1):494

  149. Kalim U, Gardner MK, Brown EJ, Feng WC (2013) Seamless migration of virtual machines across networks. In: 2013 22nd International Conference on Computer Communications and Networks (ICCCN). IEEE, pp 1–7

  150. Smart cooling of data centers. 03 Jun 2003

  151. The Problem of Power Consumption in Servers | IntelDeveloper Zone. https://software.intel.com/en-us/articles/the-problem-of-power-consumption-in-servers. Accessed 28 Jan 2015

  152. Energy Efficiency, Data Centers | NRDC. http://www.nrdc.org/energy/data-center-efficiency-assessment.asp. Accessed 05 Feb 2015

  153. Chun B-G, Iannaccone G, Iannaccone G, Katz R, Lee G, Niccolini L (2010) An energy case for hybrid datacenters. ACM SIGOPS Oper Syst Rev 44(1):76

    Article  Google Scholar 

  154. Puliafito A (2012) Cloud@ home: toward a volunteer cloud. IT Prof Mag 14(1):27

  155. Di S, Wang C-L (2013) Dynamic optimization of multiattribute resource allocation in self-organizing clouds. IEEE Trans Parallel Distrib Syst 24(3):464–478

    Article  Google Scholar 

Download references

Acknowledgments

This work is fully funded and partially funded by Bright Spark Program and High Impact Research Grant from the University of Malaya under reference BSP/APP/1635/2013 and UM.C/625/1/HIR/MOE/FCSIT/03, respectively. The authors also extend their sincere appreciations to the Deanship of Scientific Research at King Saud University for its funding this Prolific Research Group (PRG-1436-16). Additionally, the authors are thankful to Saif Ur Rehman Khan for his ample guidance in revising the manuscript. The authors also thank the reviewers for their useful comments, which significantly improved the quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah Yousafzai or Abdullah Gani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousafzai, A., Gani, A., Noor, R.M. et al. Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowl Inf Syst 50, 347–381 (2017). https://doi.org/10.1007/s10115-016-0951-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-016-0951-y

Keywords

Navigation