Abstract
We present in this paper alternating linearization algorithms based on an alternating direction augmented Lagrangian approach for minimizing the sum of two convex functions. Our basic methods require at most \({O(1/\epsilon)}\) iterations to obtain an \({\epsilon}\) -optimal solution, while our accelerated (i.e., fast) versions of them require at most \({O(1/\sqrt{\epsilon})}\) iterations, with little change in the computational effort required at each iteration. For both types of methods, we present one algorithm that requires both functions to be smooth with Lipschitz continuous gradients and one algorithm that needs only one of the functions to be so. Algorithms in this paper are Gauss-Seidel type methods, in contrast to the ones proposed by Goldfarb and Ma in (Fast multiple splitting algorithms for convex optimization, Columbia University, 2009) where the algorithms are Jacobi type methods. Numerical results are reported to support our theoretical conclusions and demonstrate the practical potential of our algorithms.
Similar content being viewed by others
References
Afonso M., Bioucas-Dias J., Figueiredo M.: Fast image recoery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 2345–2356 (2010)
Afonso M., Bioucas-Dias J., Figueiredo M.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20, 681–695 (2011)
Aybat, N.S., Goldfarb, D., Iyengar, G.: Fast first-order methods for stable principal component pursuit. Preprint available at http://arxiv.org/abs/1105.2126 (2011)
Banerjee O., El Ghaoui L., d’Aspremont A.: Model selection through sparse maximum likelihood estimation for multivariate gaussian for binary data. J. Mach. Learn. Res. 9, 485–516 (2008)
Beck A., Teboulle M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)
Bertsekas D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
Candès E.J., Li X., Ma Y., Wright J.: Robust principal component analysis?. J. ACM 58, 1–37 (2011)
Candès E.J., Recht B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)
Candès E.J., Romberg J., Tao T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52, 489–509 (2006)
Candès E.J., Tao T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inform. Theory 56, 2053–2080 (2009)
Combettes P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)
Combettes P.L., Pesquet Jean-Christophe: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1, 564–574 (2007)
Combettes P.L., Wajs V.R.: Signal recovery by proximal forward-backward splitting. SIAM J. Multiscale Model. Simul. 4, 1168–1200 (2005)
Donoho D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)
Douglas J., Rachford H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
Eckstein J., Bertsekas D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
Eckstein J., Svaiter B.F.: A family of projective splitting methods for sum of two maximal monotone operators. Math. Program. Ser. B 111, 173–199 (2008)
Figueiredo M., Nowak R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12, 906–916 (2003)
Friedman J., Hastie T., Tibshirani R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)
Gabay D., Mercier B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comp. Math. Appl. 2, 17–40 (1976)
Glowinski R., Le Tallec P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)
Goldfarb, D., Ma, S.: Fast multiple splitting algorithms for convex optimization. Technical report, Department of IEOR, Columbia University. Preprint available at http://arxiv.org/abs/0912.4570 (2009)
Goldfarb D., Ma S.: Convergence of fixed point continuation algorithms for matrix rank minimization. Found. Comput. Math. 11, 183–210 (2011)
Goldfarb, D., Scheinberg, K.: Fast first-order methods for composite convex optimization with line search. Technical report, Department of IEOR, Columbia University (2011)
Goldstein T., Osher S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)
Hale E.T., Yin W., Zhang Y.: Fixed-point continuation for ℓ1-minimization: Methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)
He B.S., Liao L.-Z., Han D., Yang H.: A new inexact alternating direction method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)
He, B.S., Tao, M., Xu, M., Yuan, X.: Alternating direction based contraction method for generally separable linearly constrained convex programming problems. Optimization-online: http://www.optimization-online.org/DB_HTML/2009/11/2465.html (2009)
He B.S., Yang H., Wang S.L.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106, 337–356 (2000)
Keshavan R.H., Montanari A., Oh S.: Matrix completion from a few entries. IEEE Trans. Info. Theory 56, 2980–2998 (2010)
Kiwiel K.C., Rosa C.H., Ruszczynski A.: Proximal decomposition via alternating linearization. SIAM J. Optim. 9, 668–689 (1999)
Lions P.L., Mercier B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)
Ma S., Goldfarb D., Chen L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. Ser. A 128, 321–353 (2011)
Malick J., Povh J., Rendl F., Wiegele A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20, 336–356 (2009)
Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating minimization augmented Lagrangian method. Technical report, School of ISyE, Georgia Tech (2010)
Nesterov Y.E.: A method for unconstrained convex minimization problem with the rate of convergence \({\mathcal{O}(1/k^2)}\) . Dokl. Akad. Nauk SSSR 269, 543–547 (1983)
Nesterov, Y.E.: Introductory lectures on convex optimization. 87, xviii+236 (2004). A basic course
Nesterov Y.E.: Smooth minimization for non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)
Nesterov, Y.E.: Gradient methods for minimizing composite objective function. CORE Discussion Paper 2007/76 (2007)
Peaceman D.H., Rachford H.H.: The numerical solution of parabolic elliptic differential equations. SIAM J. Appl. Math. 3, 28–41 (1955)
Recht B., Fazel M., Parrilo P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)
Scheinberg, K., Ma, S., Goldfarb, D.: Sparse inverse covariance selection via alternating linearization methods. In: Proceedings of the Neural Information Processing Systems (NIPS) (2010)
Spingarn J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)
Toh K.-C., Yun S.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim. 6, 615–640 (2010)
Tseng P.: Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming. Math. Program. 48, 249–263 (1990)
Tseng P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)
Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. Technical report, Department of Mathematics, University of Washington (2008)
Wainwright M., Ravikumar P., Lafferty J.: High-dimensional graphical model selection using ℓ1-regularized logistic regression. NIPS 19, 1465–1472 (2007)
Wen Z., Goldfarb D., Yin W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2, 203–230 (2010)
Yang J., Zhang Y.: Alternating direction algorithms for ℓ1 problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011)
Yuan M., Lin Y.: Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19–35 (2007)
Yuan X. (2009) Alternating direction methods for sparse covariance selection. Preprint available at http://www.optimization-online.org/DB_HTML/2009/09/2390.html
Yuan, X., Yang, J.: Sparse and low rank matrix decomposition via alternating direction methods. Pac. J. Optim. (2012, to appear)
Author information
Authors and Affiliations
Corresponding author
Additional information
Donald Goldfarb is supported in part by NSF Grants DMS 06-06712 and DMS 10-16571, ONR Grant N00014-08-1-1118 and DOE Grant DE-FG02-08ER25856.
Rights and permissions
About this article
Cite this article
Goldfarb, D., Ma, S. & Scheinberg, K. Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141, 349–382 (2013). https://doi.org/10.1007/s10107-012-0530-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-012-0530-2
Keywords
- Convex optimization
- Variable splitting
- Alternating linearization method
- Alternating direction method
- Augmented Lagrangian method
- Optimal gradient method
- Gauss-Seidel method
- Peaceman-Rachford method