[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Local curve pattern for content-based image retrieval

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Local binary pattern (LBP) is an effective image descriptor that is being used in various computer vision applications such as detection of faces, object classification, target detection, image retrieval etc., Since its success, different versions of LBP have been proposed to overcome its limitations. These techniques derive the pattern from the predefined set of image pixels which restrict the amount of information captured by them. In this work, a new approach is proposed in which the image pixels used to derive the pattern is selected based on the image characteristics. This technique uses image line/curve characteristics to derive the local pattern which we call it as local curve pattern. The line and curve characteristics are considered since they are the dominant components of an image and are used to represent the image effectively. The proposed method is evaluated using three different databases (viz Corel 1K, Corel 10K and Brodatz), and experimental result shows that the proposed method performs better than the conventional local pattern techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Dong J, Yuan X, Xiong F (2017) Global and local oriented edge magnitude patterns for texture classification. Int J Pattern Recognit Artif Intell 31(3):1750007

    Article  Google Scholar 

  2. Belkasim S, Hong X, Basir O (2007) Content based image retrieval using discrete wavelet transform”. Int J Pattern Recognit Artif Intell 18(1):19–32

    Article  Google Scholar 

  3. Liua L, Zhaoa L, Longa Y, Kuanga G, Fieguth P (2012) Extended local binary patterns for texture classification”. Image Vis Comput 30(2):86–99

    Article  Google Scholar 

  4. Pang Y et al (2011) Efficient HOG human detection. Sig Process 91(4):773–781

    Article  MATH  Google Scholar 

  5. Hongbo Y, Xia H (2014) Histogram modification using grey-level co-occurrence matrix for image contrast enhancement. IET Image Proc 8(12):782–793

    Article  Google Scholar 

  6. Cheung W et al (2009) n-SIFT: n-Dimensional scale invariant feature transform. IEEE Trans Image Process 18(9):2012–2021

    Article  MathSciNet  MATH  Google Scholar 

  7. Uzun IS, Amira A, Bouridane A (2005) FPGA implementations of fast Fourier transforms for real-time signal and image processing. IEE Proc Vis Image Signal Process 152(3):283–296

    Article  Google Scholar 

  8. Phamila YAV, Amutha R (2014) Discrete Cosine transform based fusion of multi-focus images for visual sensor networks. Signal Process 95:161–170

    Article  Google Scholar 

  9. Farsi H, Mohamadzadeh S (2013) Colour and texture feature-based image retrieval by using hadamard matrix in discrete wavelet transform. IET Image Proc 7(3):212–218

    Article  MathSciNet  Google Scholar 

  10. Huang Q, Hao B, Chang S (2016) Adaptive digital ridgelet transform and its application in image denoising. Elsevier Digital Signal Process 52:45–54

    Article  Google Scholar 

  11. Asmare MH, Asirvadam VS, Hani AFM (2015) Image enhancement based on contourlet transform. SIViP 9(7):1679–1690

    Article  Google Scholar 

  12. Lakhonchai P, Sampo J, Sumetkijakan S (2010) Shearlet transforms and directional regularities. Int J Wavelets Multiresolut Inf Process 8(5):743–771

    Article  MathSciNet  MATH  Google Scholar 

  13. Murphy JM, Le Moigne J, Harding David J (2016) Automatic image registration of multimodal remotely sensed data with global shearlet features. IEEE Trans Geosci Remote Sens 54(3):1685–1704

    Article  Google Scholar 

  14. Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C (2012) Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans Image Process 21(4):1613–1623

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong Y, Tao D, Li X, Ma J, Pu J (2015) Texture classification and retrieval using shearlets and linear regression. IEEE Trans Cybern 45(3):358–369

    Article  Google Scholar 

  16. Dubey SR, Singh SK, Singh RK (2015) Local wavelet pattern: a new feature descriptor for image retrieval in medical ct databases. IEEE Trans Image Process 24(12):5892–5903

    Article  MathSciNet  MATH  Google Scholar 

  17. He J, Ji H, Yang X (2013) Rotation invariant texture descriptor using local shearlet-based energy histograms. IEEE Signal Process Lett 20(9):905–908

    Article  Google Scholar 

  18. Alahmadi A et al (2017) Passive detection of image forgery using DCT and local binary pattern. SIViP 11(1):81–88

    Article  MathSciNet  Google Scholar 

  19. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):51–59

    Article  Google Scholar 

  20. Takala V, Ahonen T, Pietikäinen M (2005) Block-based methods for image retrieval using local binary patterns. In: Kalviainen H, Parkkinen J, Kaarna A (eds) Image analysis volume 3540 of the series Lecture Notes in Computer Science. Springer, Berlin, pp 882–891

    Google Scholar 

  21. Liu Li et al (2016) Extended local binary patterns for face recognition. Inf Sci 358–359:56–72

    Article  Google Scholar 

  22. Yu W, Gan L, Yang S, Ding Y, Jiang P, Wang J, Li S (2014) An improved LBP algorithm for texture and face classification. SIViP 8(Supplement 1):155–161

    Article  Google Scholar 

  23. Florindo JB, Bruno OM (2016) Local fractal dimension and binary patterns in texture recognition. Pattern Recognit Lett 78:22–27

    Article  Google Scholar 

  24. Hussain M et al (2013) Gender recognition from face images with dyadic wavelet transform and local binary pattern. Int J Artif Intell Tools 22:1360018

    Article  Google Scholar 

  25. He S, Soraghan JJ, O’Reilly BF, Xing D (2009) Quantitative analysis of facial paralysis using local binary patterns in biomedical videos. IEEE Trans Biomed Eng 56(7):1864–1870

    Article  Google Scholar 

  26. Nannia L, Luminia A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125

    Article  Google Scholar 

  27. Suruliandi A, Murugeswari G, Arockia Jansi Rani P (2015) Empirical evaluation of generic weighted cubicle pattern and LBP derivatives for abnormality detection in mammogram images. Int J Image Graph 15:1550001

    Article  Google Scholar 

  28. Chen K et al (2017) Attribute-based supervised deep learning model for action recognition. Front Comput Sci 11(2):219–229

    Article  MathSciNet  Google Scholar 

  29. Oyedotun OK et al (2017) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28(12):3941–3951

    Article  Google Scholar 

  30. Mühling M et al (2017) Deep learning for content-based video retrieval in film and television production. Multimed Tools Appl 76(21):22169–22194

    Article  Google Scholar 

  31. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of advances in neural information processing systems, vol 25, pp 1090–1098

  32. Chen AT-Y et al. (2017) Convolutional neural network acceleration with hardware/software co-design. Appl Intell 48(5):1288–1301

    Google Scholar 

  33. Xi M et al (2016) Local binary pattern network: a deep learning approach for face recognition. In: Image processing (ICIP), September 2016

  34. Zhang H et al (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13(2):520–531

    Article  Google Scholar 

  35. Yang W et al (2016) Face recognition using adaptive local ternary patterns method. Neurocomputing 213:183–190

    Article  Google Scholar 

  36. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  MATH  Google Scholar 

  37. Guo Z, Zhang L, Zhang D (2010) A completed modelling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  MATH  Google Scholar 

  38. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43(3):706–719

    Article  MATH  Google Scholar 

  39. Zhu Z et al (2015) An adaptive hybrid pattern for noise-robust texture analysis. Pattern Recogn 48(8):2592–2608

    Article  Google Scholar 

  40. Liu L, Lao S, Fieguth PW, Wang X, Pietikäinen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381

    Article  MathSciNet  MATH  Google Scholar 

  41. Rahtua E, Heikkiläa J, Ojansivub V, Ahonenc T (2012) Local phase quantization for blur-insensitive image analysis. Image Vis Comput 30(8):501–512

    Article  Google Scholar 

  42. Iakovidis DK, Keramidas EG, Maroulis D (2008) Fuzzy local binary patterns for ultrasound texture characterization. In: Campilho A, Kamel M (eds) Image analysis and recognition (Lecture Notes in Computer Science). Springer, Berlin, pp 750–759

    Chapter  Google Scholar 

  43. Fathi A, Naghsh-Nilchi AR (2012) Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recognit Lett 33(9):1093–1100

    Article  Google Scholar 

  44. Ren J, Jiang X, Yuan J (2013) Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans Image Process 22(10):4049–4060

    Article  MathSciNet  MATH  Google Scholar 

  45. Ahmed F (2012) Gradient directional pattern: a robust feature descriptor for facial expression recognition. IEEE Electron Lett 48(19):1203–1204

    Article  Google Scholar 

  46. Vipparthi SK, Murala S, Gonde AB, Wu QMJ (2016) Local directional mask maximum edge patterns for image retrieval and face recognition. IET Comput Vis 10(3):182–192

    Article  Google Scholar 

  47. Huang W, Yin H (2017) Robust face recognition with structural binary gradient patterns. Pattern Recognit 68:126–140

    Article  Google Scholar 

  48. Al-Berry MN, Salem MA-M, Ebeid HM, Hussein AS, Tolba MF (2016) Fusing directional wavelet local binary pattern and moments for human action recognition. IET Comput Vis 10(2):153–162

    Article  Google Scholar 

  49. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional binary wavelet patterns for biomedical image indexing and retrieval. J Med Syst 36(5):2865–2879

    Article  Google Scholar 

  50. Ge H (2010) Gabor directional binary pattern: an image descriptor for gaze estimation. EURASIP J Adv Signal Process 2010: 807612

    Article  Google Scholar 

  51. Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans Image Process 25(9):4018–4032

    Article  MathSciNet  MATH  Google Scholar 

  52. Ferraz CT et al (2014) Object recognition based on bag of features and a new local pattern descriptor. Int J Pattern Recognit Artif Intell 28(8):1455010

    Article  Google Scholar 

  53. Pei W-J, Zhang Y-L, Zhang Y, Zheng C-H (2014) Pedestrian detection based on HOG and LBP. In: Huang DS, Bevilacqua V, Premaratne P (eds) Intelligent computing theory, volume 8588 of the series Lecture Notes in Computer Science. Springer, Cham, pp 715–720

    Google Scholar 

  54. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  MATH  Google Scholar 

  55. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  56. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: applications to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  MATH  Google Scholar 

  57. Corel 1K database from http://wang.ist.psu.edu/docs/home.shtml#download. Accessed Mar 2017

  58. Corel 10K database from https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval. Accessed Mar 2017

  59. Brodatz database http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html. Accessed Mar 2017

  60. Dubey SR, Singh SK, Singh RK (2015) Boosting local binary pattern with bag-of-filters for content based image retrieval. In: IEEE UP section conference on electrical computer and electronics (UPCON), December 2015

Download references

Acknowledgements

The authors are very much thankful to the editor and anonymous reviewers for their valuable comments, suggestions and other directions to improve the quality of this manuscript. Also, authors thank the management of Sathyabama University and Adhiparasakthi engineering college for their constant support and motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Subash Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subash Kumar, T.G., Nagarajan, V. Local curve pattern for content-based image retrieval. Pattern Anal Applic 22, 1233–1242 (2019). https://doi.org/10.1007/s10044-018-0724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-0724-1

Keywords

Navigation