[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The dual optimizer for the growth-optimal portfolio under transaction costs

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We consider the maximization of the long-term growth rate in the Black–Scholes model under proportional transaction costs as in Taksar et al. (Math. Oper. Res. 13:277–294, 1988). Similarly as in Kallsen and Muhle-Karbe (Ann. Appl. Probab. 20:1341–1358, 2010) for optimal consumption over an infinite horizon, we tackle this problem by determining a shadow price, which is the solution of the dual problem. It can be calculated explicitly up to determining the root of a deterministic function. This in turn allows one to explicitly compute fractional Taylor expansions, both for the no-trade region of the optimal strategy and for the optimal growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barles, G., Soner, H.M.: Option pricing with transaction costs and a nonlinear Black–Scholes equation. Finance Stoch. 2, 369–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barlow, M.T.: Inequalities for upcrossings of semimartingales via Skorohod embedding. Z. Wahrscheinlichkeitstheor. Verw. Geb. 64, 457–473 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, Probability and its Applications, 2nd edn. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  4. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages, Second GI Conf., Kaiserslautern, 1975. Lecture Notes in Comput. Sci., vol. 33, pp. 134–183. Springer, Berlin (1975)

    Google Scholar 

  5. Cvitanić, J., Karatzas, I.: Hedging and portfolio optimization under transaction costs: A martingale approach. Math. Finance 6, 133–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, M., Yi, F.: Finite-horizon optimal investment with transaction costs: A parabolic double obstacle problem. J. Differ. Equ. 246, 1445–1469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, M.H.A., Norman, A.R.: Portfolio selection with transaction costs. Math. Oper. Res. 15, 676–713 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dumas, B., Luciano, E.: An exact solution to a dynamic portfolio choice problem under transaction costs. J. Finance 46, 577–595 (1991)

    Article  Google Scholar 

  9. Gerhold, S., Muhle-Karbe, J., Schachermayer, W.: Asymptotics and duality for the Davis and Norman problem. Stochastics (Special Issue for Mark Davis’ Festschrift), (to appear)

  10. Gould, H.W.: Coefficient identities for powers of Taylor and Dirichlet series. Am. Math. Mon. 81, 3–14 (1974)

    Article  MATH  Google Scholar 

  11. Guasoni, P., Rásonyi, M., Schachermayer, W.: Consistent price systems and face-lifting pricing under transaction costs. Ann. Appl. Probab. 18, 491–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, H., Pearson, N.D.: Consumption and portfolio policies with incomplete markets and short-sale constraints: the infinite-dimensional case. J. Econ. Theory 54, 259–304 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Janeček, K., Shreve, S.E.: Asymptotic analysis for optimal investment and consumption with transaction costs. Finance Stoch. 8, 181–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kallsen, J., Muhle-Karbe, J.: On using shadow prices in portfolio optimization with transaction costs. Ann. Appl. Probab. 20, 1341–1358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM J. Control Optim. 25, 1557–1586 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.-L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knuth, D.E.: The Art of Computer Programming, vol. 2, 3rd edn. Addison Wesley, Reading (1998)

    Google Scholar 

  18. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, H., Loewenstein, M.: Optimal portfolio selection with transaction costs and finite horizons. Rev. Financ. Stud. 15, 805–835 (2002)

    Article  Google Scholar 

  20. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  21. Pliska, S.R.: A stochastic calculus model of continuous trading: Optimal portfolios. Math. Oper. Res. 11, 370–382 (1986)

    Article  MathSciNet  Google Scholar 

  22. Rogers, L.C.G.: Why is the effect of proportional transaction costs O(δ 2/3). In: Yin, G., Zhang, Q. (eds.) Mathematics of Finance. Contemp. Math., vol. 351, pp. 303–308. Am. Math. Soc., Providence (2004)

    Chapter  Google Scholar 

  23. Shreve, S.E., Soner, H.M.: Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4, 609–692 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Taksar, M., Klass, M.J., Assaf, D.: A diffusion model for optimal portfolio selection in the presence of brokerage fees. Math. Oper. Res. 13, 277–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Whalley, A.E., Wilmott, P.: An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Math. Finance 7, 307–324 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Muhle-Karbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhold, S., Muhle-Karbe, J. & Schachermayer, W. The dual optimizer for the growth-optimal portfolio under transaction costs. Finance Stoch 17, 325–354 (2013). https://doi.org/10.1007/s00780-011-0165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-011-0165-9

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation