[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Exponential utility maximization under partial information

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We consider the exponential utility maximization problem under partial information. The underlying asset price process follows a continuous semimartingale and strategies have to be constructed when only part of the information in the market is available. We show that this problem is equivalent to a new exponential optimization problem which is formulated in terms of observable processes. We prove that the value process of the reduced problem is the unique solution of a backward stochastic differential equation (BSDE) which characterizes the optimal strategy. We examine two particular cases of diffusion market models for which an explicit solution has been provided. Finally, we study the issue of sufficiency of partial information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, M.H.A.: Optimal hedging with basis risk. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance, pp. 169–187. Springer, Berlin (2006)

    Chapter  Google Scholar 

  2. Delbaen, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer, M., Stricker, C.: Exponential hedging and entropic penalties. Math. Finance 12, 99–123 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel, II. Hermann, Paris (1980)

    Google Scholar 

  4. Di Masi, G.B., Platen, E., Runggaldier, W.J.: Hedging of options under discrete observation on assets with stochastic volatility. In: Bolthausen, E., Dozzi, M., Russo, F. (eds.) Seminar on Stoch. Anal. Rand. Fields Appl., pp. 359–364. Birkhäuser, Basel (1995)

    Google Scholar 

  5. Friedman, A.: Stochastic Differential Equations and Applications, vol. 1. Academic Press, New York (1975)

    MATH  Google Scholar 

  6. Frei, C., Schweizer, M.: Exponential utility indifference valuation in two Brownian settings with stochastic correlation. Adv. Appl. Probab. 40, 401–423 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Henderson, V.: Valuation of claims on nontraded assets using utility maximization. Math. Finance 12, 351–373 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Henderson, V., Hobson, D.G.: Real options with constant relative risk aversion. J. Econ. Dyn. Control 27, 329–355 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hobson, D.G.: Stochastic volatility models, correlation, and the q-optimal measure. Math. Finance 14, 537–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hu, Y., Imkeller, P., Müller, M.: Utility maximization in incomplete markets. Ann. Appl. Probab. 15, 1691–1712 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Math., vol. 714. Springer, Berlin (1979)

    MATH  Google Scholar 

  12. Karatzas, I., Zhao, X.: Bayesian adaptive portfolio optimization. In: Jouini, E., Cvitanić, J., Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management. Handb. Math. Finance, pp. 632–669. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  13. Kazamaki, N.: Continuous Exponential Martingales and BMO. Lecture Notes in Math., vol. 1579. Springer, Berlin (1994)

    MATH  Google Scholar 

  14. Kohlmann, M., Xiong, D., Ye, Z.: Change of filtrations and mean-variance hedging. Stochastics 79, 539–562 (2007)

    MATH  MathSciNet  Google Scholar 

  15. Lakner, P.: Optimal trading strategy for an investor: the case of partial information. Stochastic Process. Appl. 76, 77–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liptser, R.S., Shiryayev, A.N.: Martingale Theory. Nauka, Moscow (1986)

    MATH  Google Scholar 

  17. Liptser, R.S., Shiryayev, A.N.: Statistics of Random Processes. I. General Theory. Springer, New York (1977)

    MATH  Google Scholar 

  18. Mania, M., Tevzadze, R.: A unified characterization of q-optimal and minimal entropy martingale measures by semimartingale backward equations. Georgian Math. J. 10, 289–310 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Mania, M., Tevzadze, R., Toronjadze, T.: Mean–variance hedging under partial information. SIAM J. Control Optim. 47, 2381–2409 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  21. Monoyios, M.: Performance of utility-based strategies for hedging basis risk. Quant. Finance 4, 245–255 (2004)

    Article  MathSciNet  Google Scholar 

  22. Morlais, M.A.: Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem. Finance Stoch. 13, 121–150 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Musiela, M., Zariphopoulou, T.: An example of indifference prices under exponential preferences. Finance Stoch. 8, 229–239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oleinik, O.A., Radkevich, E.V.: Second Order Equations with Nonnegative Characteristic Form. Plenum, New York (1973)

    Google Scholar 

  25. Pham, H.: Mean–variance hedging for partially observed drift processes. Int. J. Theor. Appl. Finance 4, 263–284 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pham, H., Quenez, M.C.: Optimal portfolio in partially observed stochastic volatility models. Ann. Appl. Probab. 11, 210–238 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rouge, R., El Karoui, N.: Pricing via utility maximization and entropy. Math. Finance 10, 259–276 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schweizer, M.: Risk-minimizing hedging strategies under restricted information. Math. Finance 4, 327–342 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shiryayev, A.N.: Optimal Stopping Rules. Springer, New York (1978)

    MATH  Google Scholar 

  30. Sekine, J.: On exponential hedging and related quadratic backward stochastic differential equations. Appl. Math. Optim. 54, 131–158 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tevzadze, R.: Solvability of backward stochastic differential equations with quadratic growth. Stoch. Process. Appl. 118, 503–515 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zohar, G.: A generalized Cameron–Martin formula with applications to partially observed dynamic portfolio optimization. Math. Finance 11, 475–494 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mania.

Additional information

Partially supported by the MiUR Project “Stochastic Methods in Finance”. M. Mania gratefully acknowledges financial support from ICER, Torino.

The authors would like to thank a Co-Editor and two referees for their valuable comments and suggestions. Special thanks are also due to Revaz Tevzadze for several helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mania, M., Santacroce, M. Exponential utility maximization under partial information. Finance Stoch 14, 419–448 (2010). https://doi.org/10.1007/s00780-009-0114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-009-0114-z

Mathematics Subject Classification (2000)

JEL Classification

Navigation