[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Interval Abel integral equation

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we use a generalization of the Riemann–Liouville fractional integral for interval-valued functions to study a theory of the interval Abel integral equation (IAIE). Our aim is to clarify under which suitable conditions the IAIE is solvable. The theory is illustrated by solving some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agarwal RP, Arshad S, O’Regan D, Lupulescu V (2012) Fuzzy fractional integral equations under compactness type condition. Fract Calc Appl Anal 15:572–590

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal RP, Lakshmikantham V, Nieto JJ (2010) On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal TMA 72:2859–2862

    Article  MathSciNet  MATH  Google Scholar 

  • Allahviranloo T, Salahshour S, Abbasbandy S (2012) Explicit solutions of fractional differential equations with uncertainty. Soft Comput 16:297–302

    Article  MATH  Google Scholar 

  • Arshad S, Lupulescu V (2011) On the fractional differential equations with uncertainty. Nonlinear Anal TMA 74:3685–3693

    Article  MathSciNet  MATH  Google Scholar 

  • Arshad S, Lupulescu V (2011) Fractional differential equation with fuzzy initial condition. Electron J Differ Equ 34:1–8

    MathSciNet  MATH  Google Scholar 

  • Aumann RJ (1965) Integrals of set-valued functions. J Math Anal Appl 12:1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151:581–599

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B, Stefanini L (2013) Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst 230:119–141

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y, Román-Flores H, Jiménez-Gamero MD (2011) Generalized derivative and \(\pi \) -derivative for set-valued functions. Inf Sci 181:2177–2188

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y, Rufián-Lizana A, Román-Flores H, Jiménez-Gamero MD (2013) Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst 219:49–67

    Article  MathSciNet  MATH  Google Scholar 

  • Debreu G (1966) Integration of correspondences. In: Proceedings of fifth Berkeley symposium on mathematics statistical and probability, Vol II, part I, pp 351–372

  • Gorenflo R, Vessella S (1977) Abel integral equations: analysis and applications. Springer, Berlin

    MATH  Google Scholar 

  • Hoa NV (2015a) The initial value problem for interval-valued second-order differential equations under generalized H-differentiability. Inf Sci 311:119–148

  • Hoa NV (2015b) Fuzzy fractional functional integral and differential equations. Fuzzy Sets Syst 280:58–90

  • Hiai F, Umegaki H (1977) Integrals, conditional expectations and martingales of multivalued functions. J Multivar Anal 7:149–182

    Article  MathSciNet  MATH  Google Scholar 

  • Hukuhara M (1967) Intégration des applications mesurables dont la valeur est un compact convex. Funkcial. Ekvac. 10: 205–229

  • Lupulescu V (2013) Hukuhara differentiability of interval-valued functions and interval differential equations on time scales. Inf Sci 248:50–67

  • Lupulescu V (2015) Fractional calculus for interval-valued functions. Fuzzy Sets Syst 265:63–85

    Article  MathSciNet  Google Scholar 

  • Malinowski MT (2011) Interval differential equations with a second type Hukuhara derivative. Appl Math Lett 24:2118–2123

    Article  MathSciNet  MATH  Google Scholar 

  • Malinowski MT (2012) Interval Cauchy problem with a second type Hukuhara derivative. Inform Sci 213:94–105

    Article  MathSciNet  MATH  Google Scholar 

  • Malinowski MT (2012) Random fuzzy differential equations under generalized Lipschitz condition. Nonlinear Anal Real World Appl 13:860–881

    Article  MathSciNet  MATH  Google Scholar 

  • Malinowski MT (2012) On set differential equations in Banach spaces—a second type Hukuhara differentiability approach. Appl Math Comput 219:289–305

    Article  MathSciNet  MATH  Google Scholar 

  • Markov S (1979) Calculus for interval functions of a real variables. Computing 22:325–337

    Article  MathSciNet  MATH  Google Scholar 

  • Moore RE (1979) Methods and applications of interval analysis. SIAM studies in applied mathematics, Philadelphia

  • Salahshour S, Allahviranloo T, Abbasbandy S, Baleanu D (2012) Existence and uniqueness results for fractional differential equations with uncertainty. Adv Differ Equ 112:1–17

    MathSciNet  MATH  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach Science Publishers, Switzerland

    MATH  Google Scholar 

  • Stefanini L (2010) A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst 161:1564–1584

  • Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval valued functions and interval differential equations. Nonlinear Anal 71:1311–1328

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express deep gratitude to the Editor-in-Chief Professor Antonio Di Nola and anonymous referees for their valuable comments and suggestions which have greatly improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngo Van Hoa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupulescu, V., Van Hoa, N. Interval Abel integral equation. Soft Comput 21, 2777–2784 (2017). https://doi.org/10.1007/s00500-015-1980-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1980-2

Keywords

Navigation