[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Hamilton–Waterloo Problem for Triangle-Factors and Heptagon-Factors

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Given 2-factors \(R\) and \(S\) of order \(n\), let \(r\) and \(s\) be nonnegative integers with \(r+s=\lfloor \frac{n-1}{2}\rfloor \), the Hamilton–Waterloo problem asks for a 2-factorization of \(K_n\) if \(n\) is odd, or of \(K_n-I\) if \(n\) is even, in which \(r\) of its 2-factors are isomorphic to \(R\) and the other \(s\) 2-factors are isomorphic to \(S\). In this paper, we solve the problem for the case of triangle-factors and heptagon-factors for odd \(n\) with 3 possible exceptions when \(n=21\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, P., Billington, E.J., Bryant, D.E., El-Zanati, S.I.: On the Hamilton–Waterloo problem. Graphs Comb. 18, 31–51 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alspach, B., Häggkvist, R.: Some observations on the Oberwolfach problem. J. Graph Theory 9, 177–187 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alspach, B., Schellenberg, P.J., Stinson, D.R., Wagner, D.: The Oberwolfach problem and factors of uniform odd length cycles. J. Comb. Theory Ser. A 52, 20–43 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bryant, D.E., Danziger, P.: On bipartite 2-factorizations of \(k_n-I\) and the Oberwolfach problem. J. Graph Theory 68, 22–37 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bryant, D.E., Danziger, P., Dean, M.: On the Hamilton–Waterloo problem for bipartite 2-factors. J. Comb. Des. 21, 60–80 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Danziger, P., Quattrocchi, G., Stevens, B.: The Hamilton–Waterloo problem for cycle sizes 3 and 4. J. Comb. Des. 17, 342–352 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dinitz, J.H., Ling, A.C.H.: The Hamilton–Waterloo problem with triangle-factors and Hamilton cycles: the case \(n\equiv 3 ({\rm mod\,18})\). J. Comb. Math. Comb. Comput. 70, 143–147 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Dinitz, J.H., Ling, A.C.H.: The Hamilton–Waterloo problem: the case of triangle-factors and one Hamilton cycle. J. Comb. Des. 17, 160–176 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fu, H.L., Huang, K.C.: The Hamilton–Waterloo problem for two even cycles factors. Taiwan. J. of Math. 12, 933–940 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Hoffman, D., Schellenberg, P.: The existence of \(C_k\)-factorizations of \(K_{2n}-F\). Discrete Math. 97, 243–250 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Horak, P., Nedela, R., Rosa, A.: The Hamilton–Waterloo problem: the case of Hamilton cycles and triangle-factors. Discrete Math. 284, 181–188 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lei, H., Fu, H.L., Shen, H.: The Hamilton–Waterloo problem for Hamilton cycles and \(C_{4k}\)-factors. Ars Comb. 100, 341–347 (2011)

    MATH  MathSciNet  Google Scholar 

  13. Lei, H., Shen, H.: The Hamilton–Waterloo problem for Hamilton cycles and triangle-factors. J. Comb. Des. 20, 305–316 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, J.: The equipartite Oberwolfach problem with uniform tables. J. Comb. Theory, Ser. A 101, 20–34 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deep gratefulness to the reviewers for their detail comments and valuable suggestions. The work of Hung-Lin Fu was partially supported by NSC 100-2115-M-009-005-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchuan Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Fu, HL. The Hamilton–Waterloo Problem for Triangle-Factors and Heptagon-Factors. Graphs and Combinatorics 32, 271–278 (2016). https://doi.org/10.1007/s00373-015-1570-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1570-1

Keywords

Navigation