Abstract
Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of data and materials
The test mesh data set being presented in this paper is available on reasonable request.
References
Ströter, D., Mueller-Roemer, J.S., Weber, D., Fellner, D.W.: Fast harmonic tetrahedral mesh optimization. Vis. Comput. 38(9), 3419–3433 (2022). https://doi.org/10.1007/s00371-022-02547-6
Jia, S., Zhang, W., Wang, G., Pan, Z., Yu, X.: A real-time deformable cutting method using two levels of linked voxels for improved decoupling between collision and rendering. Vis. Comput. 39(2), 765–783 (2022). https://doi.org/10.1007/s00371-021-02373-2
Prashant, G.: A survey of modeling, rendering and animation of clouds in computer graphics. Vis. Comput. 37(7), 1931–1948 (2020). https://doi.org/10.1007/s00371-020-01953-y
Sun, X., Rosin, P.L., Martin, R., Langbein, F.: Fast and effective feature-preserving mesh denoising. IEEE Trans. Vis. Comput. Graph. 13(5), 925–938 (2007)
Zheng, Y., Fu, H., Au, O.K.C., Tai, C.L.: Bilateral normal filtering for mesh denoising. IEEE Trans. Vis. Comput. Graph. 17(10), 1521–1530 (2011)
Zhang, W., Deng, B., Zhang, J., Bouaziz, S., Liu, L.: Guided mesh normal filtering. Comput. Graph. Forum 34(7), 23–34 (2015)
Lu, X., Liu, X., Deng, Z., Chen, W.: An efficient approach for feature-preserving mesh denoising. Opt. Lasers Eng. 90, 186–195 (2017)
Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 23(3), 391–400 (2004)
Lu, X., Schaefer, S., Luo, J., Ma, L., He, Y.: Low rank matrix approximation for 3d geometry filtering. IEEE Trans. Vis. Comput. Graph. 28(4), 1835–1847 (2022)
Li, X., Zhu, L., Fu, C.W., Heng, P.A.: Non-local low-rank normal filtering for mesh denoising. Comput. Graph. Forum 37(7), 155–166 (2018)
Yaz, I.O., Loriot, S.: Triangulated surface mesh segmentation. In: CGAL User and Reference Manual (2022). https://doc.cgal.org/5.4.1/Manual/packages.html#PkgSurfaceMeshSegmentation
Grzeczkowicz, G., Vallet, B.: Semantic segmentation of urban textured meshes through point sampling. ISPRS Ann. Photogram., Remote Sens. Spat. Inf. Sci. 2, 177–184 (2022)
Hu, Z., Bai, X., Shang, J., Zhang, R., Dong, J., Wang, X., Sun, G., Fu, H., Tai, C.L.: Vmnet: voxel-mesh network for geodesic-aware 3d semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15488–15498 (2021)
Lian, J., Li, H., Li, N., Cai, Q.: An adaptive mesh segmentation via iterative K-means clustering. In: Proceedings of 2021 Chinese Intelligent Systems Conference, pp. 193–201. Springer Singapore, Singapore (2022)
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: ACM SIGGRAPH 2004 Papers, pp. 905–914 (2004)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Simari, P., Picciau, G., De Floriani, L.: Fast and scalable mesh superfacets. Comput. Graph. Forum 33(7), 181–190 (2014)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
Sheikh, Y.A., Khan, E.A., Kanade, T.: Mode-seeking by medoidshifts. In: 2007 11th IEEE International Conference on Computer Vision, pp. 1–8 (2007). https://doi.org/10.1109/ICCV.2007.4408978
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Computer Vision – ECCV 2008, pp. 705–718. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)
Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. (TOG) 22(3), 954–961 (2003)
Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)
Lai, Y.K., Hu, S.M., Martin, R.R., Rosin, P.L.: Fast mesh segmentation using random walks. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 183–191 (2008)
Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3d mesh analysis. In: ACM SIGGRAPH Asia 2008 papers, pp. 1–12 (2008)
Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249 (2008)
Zheng, Y., Tai, C.L., Au, O.K.C.: Dot scissor: a single-click interface for mesh segmentation. IEEE Trans. Vis. Comput. Graph. 18(8), 1304–1312 (2011)
Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Mesh scissoring with minima rule and part salience. Comput. Aided Geometr. Des. 22(5), 444–465 (2005)
Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3d mesh segmentation and labeling. In: ACM SIGGRAPH 2010 papers, pp. 1–12 (2010)
Liu, C.M., Luan, W.N., Fu, R.H., Pang, H.B., Li, Y.H.: Attention-embedding mesh saliency. Vis. Comput. 39(5), 1783–1795 (2022)
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41–65 (2018)
Vollmer, J., Mencl, R., Müller, H.: Improved Laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18(3), 131–138 (1999)
Field, D.A.: Laplacian smoothing and Delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)
Liu, X., Bao, H., Shum, H.Y., Peng, Q.: A novel volume constrained smoothing method for meshes. Graph. Models 64(3–4), 169–182 (2002)
Kim, B., Rossignac, J.: Geofilter: Geometric selection of mesh filter parameters. Comput. Graph. Forum 24(3), 295–302 (2005)
Nehab, D., Rusinkiewicz, S., Davis, J., Ramamoorthi, R.: Efficiently combining positions and normals for precise 3d geometry. ACM Trans. Graph. 24(3), 536–543 (2005)
Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: Proceedings of GRAPHITE’06, pp. 381–389 (2006)
Su, Z.X., Wang, H., Cao, J.J.: Mesh denoising based on differential coordinates. In: Proc. of IEEE Int’l Conf. on Shape Modeling and Applications 2009, pp. 1–6 (2009)
Lee, K.W., Wang, W.P.: Feature-preserving mesh denoising via bilateral normal filtering. In: Proc. of Int’l Conf. on Computer Aided Design and Computer Graphics (2005)
Chen, S., Wang, J., Pan, W., Gao, S., Wang, M., Lu, X.: Towards uniform point distribution in feature-preserving point cloud filtering. arXiv:2201.01503 (2022)
Wei, M., Yu, J., Pang, W., Wang, J., Qin, J., Liu, L., Heng, P.: Bi-normal filtering for mesh denoising. Vis. Comput. Graph., IEEE Trans. 21(1), 43–55 (2015)
Fan, H., Yu, Y., Peng, Q.: Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Trans. Vis. Comput. Graph. 16(2), 312–324 (2010)
Bian, Z., Tong, R.: Feature-preserving mesh denoising based on vertices classification. Comput. Aided Geometr. Des. 28(1), 50–64 (2011)
Wang, J., Zhang, X., Yu, Z.: A cascaded approach for feature-preserving surface mesh denoising. Comput.-Aided Des. 44(7), 597–610 (2012)
Zhu, L., Wei, M., Yu, J., Wang, W., Qin, J., Heng, P.A.: Coarse-to-fine normal filtering for feature-preserving mesh denoising based on isotropic subneighborhoods. Comput. Graph. Forum 32(7), 371–380 (2013)
Wang, J., Yu, Z.: A novel method for surface mesh smoothing: applications in biomedical modeling. In: Proceedings of the 18th International Meshing Roundtable, IMR 2009, October 25–28, 2009, Salt Lake City, UT, USA, pp. 195–210 (2009)
Wei, M., Liang, L., Pang, W.M., Wang, J., Li, W., Wu, H.: Tensor voting guided mesh denoising. IEEE Trans. Autom. Sci. Eng. 14(2), 931–945 (2017)
Lu, X., Deng, Z., Chen, W.: A robust scheme for feature-preserving mesh denoising. IEEE Trans. Vis. Comput. Graph. 22(3), 1181–1194 (2016)
Lu, X., Chen, W., Schaefer, S.: Robust mesh denoising via vertex pre-filtering and 1-median normal filtering. Comput. Aided Geometr. Des. 54, 49–60 (2017)
He, L., Schaefer, S.: Mesh denoising via l0 minimization. ACM Trans. Graph 32(4), 64:1-64:8 (2013)
Zhao, Y., Qin, H., Zeng, X., Xu, J., Dong, J.: Robust and effective mesh denoising using L0 sparse regularization. Comput.-Aided Des. 101, 82–97 (2018)
Pan, W., Lu, X., Gong, Y., Tang, W., Liu, J., He, Y., Qiu, G.: Hlo: half-kernel Laplacian operator for surface smoothing. Comput.-Aided Des. 121, 102807 (2020)
Vieira, M., Shimada, K.: Surface mesh segmentation and smooth surface extraction through region growing. Comput. Aided Geometr. Des. 22(8), 771–792 (2005)
Huang, H., Ascher, U.: Surface mesh smoothing, regularization, and feature detection. SIAM J. Sci. Comput. 31(1), 74–93 (2008). https://doi.org/10.1137/060676684
Legrand, H., Thiery, J.M., Boubekeur, T.: Filtered quadrics for high-speed geometry smoothing and clustering. Comput. Graph. Forum 38(1), 663–677 (2019)
Wang, C., Liu, Z., Liu, L.: Feature-preserving Mumford-Shah mesh processing via nonsmooth nonconvex regularization. Comput. Graph. 106, 222–236 (2022). https://doi.org/10.1016/j.cag.2022.06.006
Liu, Z., Li, Y., Wang, W., Liu, L., Chen, R.: Mesh total generalized variation for denoising. IEEE Trans. Vis. Comput. Graph. 28(12), 4418–4433 (2021). https://doi.org/10.1109/TVCG.2021.3088118
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Weijia Wang and Wei Pan are co-first authors.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, W., Pan, W., Dai, C. et al. Segmentation-driven feature-preserving mesh denoising. Vis Comput 40, 6201–6217 (2024). https://doi.org/10.1007/s00371-023-03161-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-023-03161-w