[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dynamic crack propagation in anisotropic solids under non-classical thermal shock

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Dynamic crack propagation in anisotropic cracked solids exposed to a generalized thermal shock within the framework of XFEM is investigated in this paper. The generalized theories of thermoelasticity, especially the Green–Naghdi (GN) model, are critically reviewed to demonstrate its features to study thermal wave transmission in anisotropic materials. An interaction integral is developed to extract stress intensity factors (SIFs) for dynamically moving cracks in anisotropic solids under thermal loading. In addition, a new set of tip enrichment functions for the temperature, based on the GN II model, is derived. Besides, the modified form of the maximum tangential stress (MTS) criterion, by using the near-tip stress field of a dynamically moving crack, is implemented to predict the crack growth direction. The accuracy and robustness of the proposed interaction integral and the modified form of the MTS criterion are investigated in several numerical examples including quasi-stationary as well as dynamic crack propagation in anisotropic structures. In the last two examples, the impact of material anisotropy, thermal shock magnitude, and the GN dissipation coefficient on the crack propagation path is examined. These examples show that for strong anisotropy, the thermal shock magnitude does not have any significant effect on the crack growth path. However, the crack may grow in an unexpected path for weak anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Straughan B (2011) Heat waves. Springer Science & Business Media, New York

    Google Scholar 

  2. Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309

    Google Scholar 

  3. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2(1):1–7

    Google Scholar 

  4. Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stresses 15(2):253–264

    MathSciNet  Google Scholar 

  5. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31(3):189–208

    MathSciNet  Google Scholar 

  6. Choudhuri SK (2007) On a thermoelastic three-phase-lag model. J Therm Stresses 30(3):231–238

    Google Scholar 

  7. Zamani A, Hetnarski RB, Eslami MR (2011) Second sound in a cracked layer based on Lord-Shulman theory. J Therm Stresses 34(3):181–200

    Google Scholar 

  8. Esmati V, Nazari MB, Rokhi MM (2018) Implementation of XFEM for dynamic thermoelastic crack analysis under non-classic thermal shock. Theoret Appl Fract Mech 95:42–58

    Google Scholar 

  9. Bayat SH, Nazari MB (2022) Dynamic crack propagation under generalized thermal shock based on Lord-Shulman model. Theoret Appl Fract Mech 122:103557

    Google Scholar 

  10. Zarmehri NR, Nazari MB, Rokhi MM (2018) XFEM analysis of a 2D cracked finite domain under thermal shock based on Green-Lindsay theory. Eng Fract Mech 191:286–299

    Google Scholar 

  11. Shahsavan M, Nazari MB, Rokhi MM (2019) Dynamic analysis of cracks under thermal shock considering thermoelasticity without energy dissipation. J Therm Stresses 42(5):607–628

    Google Scholar 

  12. Nazari MB, Rokhi MM (2020) Evaluation of SIFs for cracks under thermal impact based on Green-Naghdi theory. Theoret Appl Fract Mech 107:102557

    Google Scholar 

  13. Bayat SH, Nazari MB (2023) Dynamic crack propagation under thermal impact. Int J Solids Str 264:112090

    Google Scholar 

  14. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    MathSciNet  Google Scholar 

  15. Wang Y, Zhou X, Kou M (2018) A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks. Int J Fract 211(1):13–42

    Google Scholar 

  16. Wang Y, Zhou X, Kou M (2018) Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles. Ceram Int 44(10):11512–11542

    Google Scholar 

  17. Wang Y, Zhou X, Kou M (2018) Numerical studies on thermal shock crack branching instability in brittle solids. Eng Fract Mech 204:157–184

    Google Scholar 

  18. Wang Y, Zhou X (2019) Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes. Int J Rock Mech Min Sci 117:31–48

    Google Scholar 

  19. Wang Y, Zhou X, Zhang T (2019) Size effect of thermal shock crack patterns in ceramics: Insights from a nonlocal numerical approach. Mech Mater 137:103133

    Google Scholar 

  20. Wang L, Xu J, Wang J (2018) A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction. Int J Heat Mass Transf 118:1284–1292

    Google Scholar 

  21. Wen Z, Hou C, Zhao M, Wan X (2023) A peridynamic model for non-Fourier heat transfer in orthotropic plate with uninsulated cracks. Appl Math Model 115:706–723

    MathSciNet  Google Scholar 

  22. Zhou XP, Bi J (2018) Numerical simulation of thermal cracking in rocks based on general particle dynamics. J Eng Mech 144(1):04017156

    Google Scholar 

  23. Rabczuk T, Song J, Zhuang X, Anitescu C (2019) Extended finite element and meshfree methods, Academic Press

  24. Stroh AN (1958) Dislocations and Cracks in Anisotropic Elasticity. Philos Mag 3(30):625–646

    MathSciNet  Google Scholar 

  25. Sih GC, Paris PC, Irwin GR (1965) On cracks in rectilinearly anisotropic bodies. Int J FractMech 1(3):189–203

    Google Scholar 

  26. Carloni C, Piva A, Viola E (2003) An alternative complex variable formulation for an inclined crack in an orthotropic medium. Eng Fract Mech 70(15):2033–2058

    Google Scholar 

  27. Nobile L, Carloni C (2005) Fracture analysis for orthotropic cracked plates. Compos Str 68(3):285–293

    Google Scholar 

  28. Saouma VE, Sikiotis ES (1986) Stress intensity factors in anisotropic bodies using singular isoparametric elements. Eng Fract Mech 25(1):115–121

    Google Scholar 

  29. Saouma VE, Ayari ML, Leavell DA (1987) Mixed mode crack propagation in homogeneous anisotropic solids. Eng Fract Mech 27(2):171–184

    Google Scholar 

  30. Boone TJ, Wawrzynek PA, Ingraffea AR (1987) Finite element modeling of fracture propagation in orthotropic materials. Eng Fract Mech 26(2):185–201

    Google Scholar 

  31. Doblare M, Espiga F, Garcia L, Alcantud M (1990) Study of crack propagation in orthotropic materials by using the boundary element method. Eng Fract Mech 37(5):953–967

    Google Scholar 

  32. Aliabadi MH, Sollero P (1998) Crack growth analysis in homogeneous orthotropic laminates. Compos Sci Technol 58(10):1697–1703

    Google Scholar 

  33. García-Sánchez F, Zhang C, Sáez A (2008) A two-dimensional time-domain boundary element method for dynamic crack problems in anisotropic solids. Eng Fract Mech 75(6):1412–1430

    Google Scholar 

  34. Ghorashi SS, Mohammadi S, Sabbagh-Yazdi S-R (2011) Orthotropic enriched element free Galerkin method for fracture analysis of composites. Eng Fract Mech 78(9):1906–1927

    Google Scholar 

  35. Zhang J, Zhou G, Gong S, Wang S (2017) Transient heat transfer analysis of anisotropic material by using Element-Free Galerkin method. Int Commun Heat Mass Transfer 84:134–143

    Google Scholar 

  36. Zhang J-P, Wang S-S, Gong S-G, Zuo Q-S, Hu H-Y (2019) Thermo-mechanical coupling analysis of the orthotropic structures by using element-free Galerkin method. Eng Anal Bound Elem 101:198–213

    MathSciNet  Google Scholar 

  37. Asadpoure A, Mohammadi S, Vafai A (2006) Modeling crack in orthotropic media using a coupled finite element and partition of unity methods. Finite Elem Anal Des 42(13):1165–1175

    Google Scholar 

  38. Motamedi D, Mohammadi S (2010) Dynamic analysis of fixed cracks in composites by the extended finite element method. Eng Fract Mech 77(17):3373–3393

    Google Scholar 

  39. Bouhala L, Makradi A, Belouettar S (2015) Thermo-anisotropic crack propagation by XFEM. Int J Mech Sci 103:235–246

    Google Scholar 

  40. Huynh DBP, Belytschko T (2009) The extended finite element method for fracture in composite materials. Int J Numer Meth Eng 77:214–239

    MathSciNet  Google Scholar 

  41. Bayat SH, Nazari MB (2022) XFEM analysis of cracked orthotropic media under non-classic thermal shock. J Therm Anal Calorim. https://doi.org/10.1007/s10973-022-11549-4

    Article  Google Scholar 

  42. Bayat SH, Nazari MB (2023) Dynamic crack analysis in anisotropic media under wave-like thermal loading. Eur J Mech A/Solids 99:104913

    MathSciNet  Google Scholar 

  43. Ghorashi SS, Valizadeh N, Mohammadi S, Rabczuk T (2015) T-spline based XIGA for fracture analysis of orthotropic media. Comput Str 147:138–146

    Google Scholar 

  44. Gu J, Yu T, Lich LV, Tanaka S, Qiu L, Bui TQ (2019) Adaptive orthotropic XIGA for fracture analysis of composites. Compos B Eng 176:107259

    Google Scholar 

  45. Asadpoure A, Mohammadi S (2007) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Meth Eng 69:2150–2172

    Google Scholar 

  46. Bayat SH, Nazari MB (2021) Thermal fracture analysis in orthotropic materials by XFEM. Theoret Appl Fract Mech 112:102843

    Google Scholar 

  47. Cahill L, Natarajan S, Bordas S, O’Higgins R, McCarthy C (2014) An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Compos Str 107:119–130

    Google Scholar 

  48. Nguyen MN, Nguyen NT, Truong TT, Bui TQ (2019) Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element. Eng Fract Mech 206:89–113

    Google Scholar 

  49. Wu KC (1989) On the crack-tip fields of a dynamically propagating crack in an anisotropic elastic solid. Int J Fract 41(4):253–266

    Google Scholar 

  50. Wu K-C (2000) Dynamic crack growth in anisotropic material. Int J Fract 106(1):1–12

    Google Scholar 

  51. Atkinson C (1965) The propagation of a brittle crack in anisotropic material. Int J Eng Sci 3(1):77–91

    MathSciNet  Google Scholar 

  52. Lee KH, Hawong J-S, Choi S-H (1996) Dynamic stress intensity factors KI, KII and dynamic crack propagation characteristics of orthotropic material. Eng Fract Mech 53:119–140

    Google Scholar 

  53. Gao X, Kang XW, Wang HG (2009) Dynamic crack tip fields and dynamic crack propagation characteristics of anisotropic material. Theoret Appl Fract Mech 51(1):73–85

    Google Scholar 

  54. Motamedi D, Mohammadi S (2009) Dynamic crack propagation analysis of orthotropic media by the extended finite element method. Int J Fract 161(1):21–39

    Google Scholar 

  55. Motamedi D, Mohammadi S (2012) Fracture analysis of composites by time independent moving-crack orthotropic XFEM. Int J Mech Sci 54(1):20–37

    Google Scholar 

  56. Hetnarski RB, Eslami MR (2009) Thermal Stresses – Advanced Theory and Applications. Springer, Netherlands

    Google Scholar 

  57. Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51(12):705–729

    Google Scholar 

  58. Yu YJ, Xue Z-N, Tian X-G (2018) A modified Green-Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica 53(10):2543–2554

    MathSciNet  Google Scholar 

  59. Green A, Naghdi PM (1991) A re-examination of the basic postulates of thermomechanics. Proc Royal Soc London Series A 432:171–194

    MathSciNet  Google Scholar 

  60. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178

    MathSciNet  Google Scholar 

  61. Quintanilla R (1999) On the spatial behavior in thermoelasticity without energy dissipation. J Therm Stresses 22:213–224

    MathSciNet  Google Scholar 

  62. Kaw AK (2005) Mechanics of Composite Materials (2nd Ed.), CRC Press

  63. Dag S (2006) Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach. Eng Fract Mech 73:2802–2828

    Google Scholar 

  64. Khoei AR (2014) Extended finite element method: theory and applications. Wiley

  65. Chu SJ, Hong CS (1990) Application of the Jk integral to mixed mode crack problems for anisotropic composite laminates. Eng Fract Mech 35(6):1093–1103

    Google Scholar 

  66. Kim J-H, Paulino GH (2003) The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. Int J Solids Str 40(15):3967–4001

    Google Scholar 

  67. Bayat SH, Nazari MB (2023) Dynamically propagating cracks in anisotropic plates subjected to hyperbolic thermal shock. Adv Mater Process Technol pp. 1–33

  68. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386

    Google Scholar 

  69. Stern M, Becker EB, Dunham RS (1976) A contour integral computation of mixed-mode stress intensity factors. Int J Fract 12(3):359–368

    Google Scholar 

  70. Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2):335–341

    Google Scholar 

  71. Wang S, Yau J, Corten HT (1980) A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity. Int J Fract 16:247–259

    MathSciNet  Google Scholar 

  72. Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2):405–421

    Google Scholar 

  73. Dolbow JE, Gosz M (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct 39(9):2557–2574

    Google Scholar 

  74. Duflot M (2008) The extended finite element method in thermoelastic fracture mechanics. Int J Numer Meth Eng 74(5):827–847

    MathSciNet  Google Scholar 

  75. Mohtarami E, Baghbanan A, Hashemolhosseini H, Bordas SP (2019) Fracture mechanism simulation of inhomogeneous anisotropic rocks by extended finite element method. Theoret Appl Fract Mech 104:102359

    Google Scholar 

  76. Krysl P, Belytschko T (1999) The Element Free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Meth Eng 44(6):767–800

    Google Scholar 

  77. Song SH, Paulino GH (2006) Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method. Int J Solids Str 43(16):4830–4866

    Google Scholar 

  78. Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the eXtended finite element method. Int J Numer Meth Eng 63(5):631–659

    MathSciNet  Google Scholar 

  79. Anderson TL (2017) Fracture mechanics: fundamentals and applications, CRC press

  80. Dongye C, Ting TCT (1989) Explicit expressions of Barnett-Lothe tensors and their associated tensors for orthotropic materials. Q Appl Math 47(4):723–234

    MathSciNet  Google Scholar 

  81. Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196(1–3):516–527

    MathSciNet  Google Scholar 

  82. Chen T-C, Weng C-I (1988) Generalized coupled transient thermoelastic plane problems by laplace transform/finite element method. J Appl Mech 55(2):377–382

    Google Scholar 

  83. Tamma KK, Railkar SB (1990) Evaluation of thermally induced non-fourier stress wave disturbances via tailored hybrid transfinite element formulations. Comput Str 34(1):5–16

    Google Scholar 

  84. Tehrani PH, Eslami MR (2000) Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA J 38(3):534–541

    Google Scholar 

  85. Hosseini SM, Sladek J, Sladek V (2014) Two dimensional transient analysis of coupled non-Fick diffusion–thermoelasticity based on Green-Naghdi theory using the meshless local Petrov-Galerkin (MLPG) method. Int J Mech Sci 82:74–80

    Google Scholar 

  86. Tamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9(2):73–84

    Google Scholar 

  87. Li C, Guo H (2017) Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity. Int J Mech Sci 131–132:234–244

    Google Scholar 

  88. Kiani Y, Eslami MR (2017) A GDQ approach to thermally nonlinear generalized thermoelasticity of disks. J Therm Stresses 40:121–133

    Google Scholar 

  89. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Google Scholar 

  90. Wen L, Tian R (2016) Improved XFEM: Accurate and robust dynamic crack growth simulation. Comput Methods Appl Mech Eng 308(3):256–285

    MathSciNet  Google Scholar 

  91. Chopra AK (2017) Dynamics of Structures. University of California at Berkeley, Pearson

    Google Scholar 

  92. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–525

    Google Scholar 

  93. Nejati M, Bahrami B, Ayatollahi MR, Driesner T (2021) On the anisotropy of shear fracture toughness in rocks. Theoret Appl Fract Mech 113:102946

    Google Scholar 

  94. ‬Gdoutos E (2005) Fracture mechanics: An Introduction, Springer

  95. Hirshikesh Natarajan S, Annabattula RK (2019) "Modeling crack propagation in variable stiffness composite laminates using the phase field method. Comp Str 209:424–433

    Google Scholar 

  96. Kalthoff JF (1985) On the measurement of dynamic fracture toughnesses — a review of recent work. Int J Fract 27(3):277–298

    Google Scholar 

  97. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Meth Eng 58(12):1873–1905

    Google Scholar 

  98. Freund L (1990) Dynamic Fracture Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  99. Menouillard T, Song J-H, Duan Q (2010) Time dependent crack tip enrichment for dynamic crack propagation. Int J Fract 162(1):33–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagher Nazari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, S.H., Nazari, M.B. Dynamic crack propagation in anisotropic solids under non-classical thermal shock. Engineering with Computers 40, 1177–1216 (2024). https://doi.org/10.1007/s00366-023-01848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-023-01848-1

Keywords

Navigation