[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The numerical simulation of the tumor-induced angiogenesis process is an useful tool for the prediction of this mechanism and drug targeting using anti-angiogenesis strategy. In the current paper, we study numerically on the continuous mathematical model of tumor-induced angiogenesis in two-dimensional spaces. The studied model is a system of nonlinear time-dependent partial differential equations, which describes the interactions between endothelial cell, tumor angiogenesis factor and fibronectin. We first derive the global weak form of the model and discretize the time variable via a semi-implicit backward Euler method. To approximate the spatial variables of the studied model, we use a meshless technique, namely element-free Galerkin. Also, the shape functions of moving least square and moving Kriging approximations are used in this method. The main difference between two meshless methods proposed here is that the shape functions of moving least squares approximation do not satisfy Kroncker’s delta property, while moving Kriging technique satisfies this property. Also, both techniques do not require the generation of a mesh for approximation, but a background mesh is needed to compute the numerical integrations, which are appeared in the derived global weak form. The full-discrete scheme obtained here gives the linear system of algebraic equations that is solved via an iterative method, namely biconjugate gradient stabilized with zero-fill incomplete lower upper (ILU) preconditioner. Some numerical simulations are provided to illustrate the ability of the presented numerical methods, which show the endothelial cell migration in response to the tumor angiogenesis factors during angiogenesis process as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adair TH, Montani J-P (2011) Angiogenesis, Morgan and claypool life sciences

  2. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Google Scholar 

  3. Gordon MS, Mendelson DS, Kato G (2010) Tumor angiogenesis and novel antiangiogenic strategies. Int J Cancer 126:1777–1787

    Google Scholar 

  4. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Google Scholar 

  5. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5:402–418

    Google Scholar 

  6. Cao Z (2015) VEGF-mediated vascular functions in health and disease. Doctoral Thesis

  7. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    Google Scholar 

  8. Marmé D, Fusenig N (2008) Tumor angiogenesis: basic mechanisms and cancer therapy. Springer, Berlin

    Google Scholar 

  9. Papetti M, Herman IM (2001) Mechanisms of normal and tumor-derived angiogenesis. Cell Physiol 282:947–970

    Google Scholar 

  10. Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD (2015) Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 35:224–243

    Google Scholar 

  11. Folkman J, Andrus JD (2008) Tumor angiogenesis, CA: cancer. J Clin 22:226–229

    Google Scholar 

  12. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Google Scholar 

  13. Carmeliet P, Jain RK (2000) Review article angiogenesis in cancer and other diseases. Nature 407:249–257

    Google Scholar 

  14. Stefanini MO, Wu FTH, Gabhann FM, Popel AS (2009) The presence of VEGF receptors on the luminal surface of endothelial cells affects VEGF distribution and VEGF signaling. PLoS Comput Biol 5:1–17

    MathSciNet  Google Scholar 

  15. Francavilla C, Maddaluno L, Cavallaro U (2009) The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol 19:298–309

    Google Scholar 

  16. Anderson ARA, Chaplain MAJ (1998) A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl Math Lett 11:109–114

    MathSciNet  MATH  Google Scholar 

  17. Balding D, McElwain DL (1985) A mathematical model of tumour-induced capillary growth. J Theor Biol 114:53–73

    Google Scholar 

  18. Byrne HM, Chaplain MAJ (1995) Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol 57:461–486

    MATH  Google Scholar 

  19. Chaplain MAJ, Stuart AM (1993) A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J Math Appl Med Biol 10:149–168

    MATH  Google Scholar 

  20. Chaplain MAJ (1995) The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor 43:387–402

    Google Scholar 

  21. Orme ME, Chaplain MAJ (1996) A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J Math Appl Med Biol 13:73–98

    MATH  Google Scholar 

  22. Orme ME, Chaplain MAJ (1997) Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J Math App Med Biol 14:189–205

    MATH  Google Scholar 

  23. Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15:1685–1734

    MathSciNet  MATH  Google Scholar 

  24. Jackson TL (2012) Modeling tumor vasculature: molecular, cellular, and tissue level aspects and implications. Springer, New York

    Google Scholar 

  25. Logsdon EA, Finley SD, Popel AS, Gabhann FM (2014) A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 18:1491–1508

    Google Scholar 

  26. Vilanova G, Colominas I, Gomez H (2017) Computational modeling of tumor-induced angiogenesis. Arch Comput Methods Eng 24(4):1071–1102

    MathSciNet  MATH  Google Scholar 

  27. Dehghan M, Manafian Heris J, Saadatmandi A (2011) Application of the exp-function method for solving a partial differential equation arising in biology and population genetics. Int J Num Methods Heat Fluid Flow 21(6):736–753

    MathSciNet  Google Scholar 

  28. Manoussaki D, Lubkin SR, Vernon RB, Murray JD (1996) A mathematical model for the formation of vascular networks in vitro. Acta Biotheor 44:271–282

    Google Scholar 

  29. Olsen L, Sherratt JA, Maini PK, Arnold F (1997) A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol 14:261–281

    MATH  Google Scholar 

  30. Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60:857–900

    MATH  Google Scholar 

  31. Mantzaris N, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 77:111–187

    MathSciNet  MATH  Google Scholar 

  32. Chaplain MAJ (2000) Mathematical modelling of angiogenesis. J Neurooncol 50:37–51

    Google Scholar 

  33. Saadatmandi A, Dehghan M (2008) Numerical solution of a mathematical model for capillary formation in tumor angiogenesis via the tau method. Commun Numer Methods Eng 24:1467–1474

    MathSciNet  MATH  Google Scholar 

  34. Peterson JW, Carey GF, Knezevic DJ, Murray BT (2007) Adaptive finite element methodology for tumour angiogenesis modelling. Int J Numer Methods Eng 69:1212–1238

    MathSciNet  MATH  Google Scholar 

  35. Xu J, Vilanova G, Gomez H (2016) A mathematical model coupling tumor growth and angiogenesis. Plos One 11:1–20

    Google Scholar 

  36. Vilanova G, Colominas I, Gomez H (2016) A mathematical model of tumor angiogenesis: growth, regression and regrowth. J R Soc Interface 14:1–14

    Google Scholar 

  37. Atluri SN, Zhu T (1998) A new meshless local Petrove-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    MathSciNet  MATH  Google Scholar 

  38. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256

    MathSciNet  MATH  Google Scholar 

  39. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: An overview and recent developments. Comput Methods Appl Mech Eng 139:17–26

    MATH  Google Scholar 

  40. Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific, Singapore

    MATH  Google Scholar 

  41. Liu GR (2009) Mesh free methods: moving beyond the finite element method. CRC Press Inc, Cambridge

    Google Scholar 

  42. Wendland H (2005) Scattered datta approximation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  43. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Amsterdam

    Google Scholar 

  44. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to nonspherical stars. Mon Not R Astron Soc 181:375–389

    MATH  Google Scholar 

  45. Liu WK, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20:1081–1106

    MathSciNet  MATH  Google Scholar 

  46. Babuska I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758

    MathSciNet  MATH  Google Scholar 

  47. Mirzaei D (2015) Analysis of moving least squares approximation revisited. J Comput Appl Math 282:237–250

    MathSciNet  MATH  Google Scholar 

  48. Bui TQ, Nguyen TN, Nguyen-Dang H (2009) A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems. Int J Numer Methods Eng 77:1359–1371

    MathSciNet  MATH  Google Scholar 

  49. Bui TQ, Nguyen MN, Zhang C (2011) A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Comput Methods Appl Mech Eng 200:1354–1366

    MATH  Google Scholar 

  50. Dehghan M, Abbaszadeh M, Mohebbi A (2015) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of Turing models. Eng Anal Bound Elem 62:93–111

    MathSciNet  MATH  Google Scholar 

  51. Dehghan M, Abbaszadeh M (2016) Numerical study of three-dimensional Turing patterns using a meshless method based on moving Kriging element free Galerkin (EFG) approach. Comput Math Appl 72:427–454

    MathSciNet  MATH  Google Scholar 

  52. Gu L (2003) Moving Kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng 56:1–11

    MATH  Google Scholar 

  53. Liu WK, Li S, Belytschko T (1997) Moving least square reproducing kernel methods part I: methodology and convergence. Comput Methods Appl Mech Eng 143:113–154

    MATH  Google Scholar 

  54. Zhu T, Atluri SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222

    MathSciNet  MATH  Google Scholar 

  55. Aluru N (2000) A point collocation method based on reproducing kernel approximation. Int J Numer Methods Eng 47:1083–1121

    MATH  Google Scholar 

  56. Onate E, Idelsohn S (1998) A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput Mech 21:283–292

    MathSciNet  MATH  Google Scholar 

  57. Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181(4):772–786

    MathSciNet  MATH  Google Scholar 

  58. Vu T-V, Khosravifard A, Hematiyan MR, Bui TQ (2018) Enhanced meshfree method with new correlation functions for functionally graded plates using a refined inverse sin shear deformation plate theory. Euro J Mech A/Solids 74:160–175

    MathSciNet  MATH  Google Scholar 

  59. Vu T-V, Khosravifard A, Hematiyan MR, Bui TQ (2018) A new refined simple TSDT-based effective meshfree method for analysis of through-thickness FG plates. Appl Math Model 57:514–534

    MathSciNet  MATH  Google Scholar 

  60. Bui TQ, Nguyen MN, Zhang Ch (2011) An efficient meshfree method for vibration analysis of laminated composite plates. Comput Mech 48:175–193

    MATH  Google Scholar 

  61. Bui TQ, Nguyen NT, Lich LV, Nguyen MN, Truong TT (2018) Analysis of transient dynamic fracture parameters of cracked functionally graded composites by improved meshfree methods. Theor Appl Fract Mech 96:642–657

    Google Scholar 

  62. Vu T-V, Nguyen N-H, Khosravifard A, Hematiyan MR, Bui TQ (2017) A simple FSDT-based meshfree method for analysis of functionally graded plates. Eng Anal Bound Elem 79:1–12

    MathSciNet  MATH  Google Scholar 

  63. Bui TQ, Nguyen MN, Zhang Ch (2011) Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method. Eng Anal Bound Elem 39:1038–1053

    MathSciNet  MATH  Google Scholar 

  64. Dehghan M, Narimani N (2018) An element-free Galerkin meshless method for simulating behavior of cancer cell invasion of surrounding tissue. Appl Math Model 59:500–513

    MathSciNet  MATH  Google Scholar 

  65. Chaplain MAJ, Anderson ARA (1997) The mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis 16:222–234

    Google Scholar 

  66. Mirzaei D, Schaback R, Dehghan M (2012) On generalized moving least squares and diffuse derivatives. IMA J Numer Anal 32(3):983–1000

    MathSciNet  MATH  Google Scholar 

  67. Racz D, Bui TQ (2012) Novel adaptive meshfree integration techniques in meshless methods. Int J Numer Methods Eng 90:1414–1434

    MathSciNet  MATH  Google Scholar 

  68. Aghahosseini A, Khosravifard A, Bui TQ (2019) Efficient analysis of dynamic fracture mechanics in various media by a novel meshfree approach. Theor Appl Fract Mech 99:161–176

    Google Scholar 

  69. Khosravifard A, Hematiyan MR, Bui TQ, Do TV (2017) Accurate and efficient analysis of stationary and propagating crack problems by meshless methods. Theor Appl Fract Mech 87:21–34

    Google Scholar 

  70. Bui TQ, Khosravifard A, Zhang Ch, Hematiyan MR, Golub MV (2013) Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Eng Struct 47:90–104

    Google Scholar 

  71. van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to reviewer for carefully reading this paper and for his/her comments and suggestions, which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Narimani, N. The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model. Engineering with Computers 36, 1517–1537 (2020). https://doi.org/10.1007/s00366-019-00779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00779-0

Keywords

Mathematics Subject Classification

Navigation